Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of 9-amino(9-deoxy)epi cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds

This article has been updated

Abstract

We describe two procedures for the synthesis of primary amines derived from 9-amino(9-deoxy)epi cinchona alkaloids, valuable catalysts used in the asymmetric functionalization of carbonyl compounds. The first approach allows the one-pot 5-g-scale syntheses of four cinchona-based analogs (1, 3, 5 and 7) from the alkaloids quinine (QN), quinidine (QD), dihydroquinine (DHQN) and dihydroquinidine (DHQD), respectively, performed by means of a Mitsunobu reaction to introduce an azide group, followed by reduction and hydrolysis. Demethylation of 1, 3, 5 and 7 with BBr3 provided direct access to the bifunctional aminocatalysts 2, 4, 6 and 8. A second approach, more convenient for scale-up (tested to a 20-g scale), is also provided. In this second procedure, the azides, formed from the O-mesylated derivatives of QN and QD, are selectively reduced with LiAlH4 to afford catalysts 1 and 3, whereas hydrogenation (Pd/C) provides 5 and 7. Demethylation of 1, 3, 5 and 7 using an alkylthiolate affords 2, 4, 6 and 8 in a process in which the less-expensive QN and QD are the only starting materials used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Reaction scheme for Approach 2: SN2-LiAlH4 or Pd/C-thiolate route.

Similar content being viewed by others

Change history

  • 25 January 2013

     In the version of this article initially published online, Fernando Bravo was not included as a corresponding author. Both Fernando Bravo and Paolo Melchiorre are corresponding authors for this manuscript. The error has been corrected in all versions of the article.

References

  1. List, B. Emil Knoevenagel and the roots of aminocatalysis. Angew. Chem. Int. Ed. 49, 1730–1734 (2010).

    Article  CAS  Google Scholar 

  2. Melchiorre, P., Marigo, M., Carlone, A. & Bartoli, G. Asymmetric aminocatalysis—gold rush in organic chemistry. Angew. Chem. Int. Ed. 47, 6138–6171 (2008).

    Article  CAS  Google Scholar 

  3. Xu, L.-W., Luo, J. & Lu, Y. Asymmetric catalysis with chiral primary amine-based organocatalysts. Chem. Commun. 14, 1807–1821 (2009).

    Article  Google Scholar 

  4. Jensen, K.L., Dickmeiss, G., Jiang, H., Albrecht, Ł. & Jørgensen, K.A. The diarylprolinol silyl ether system: a general organocatalyst. Acc. Chem. Res. 45, 248–264 (2011).

    Article  Google Scholar 

  5. List, B. Proline-catalyzed asymmetric reactions. Tetrahedron 58, 5573–5590 (2002).

    Article  CAS  Google Scholar 

  6. Lelais, G. & MacMillan, D.W.C. Modern strategies in organic catalysis: the advent and development of iminium activation. Aldrichimica Acta 39, 79–87 (2006).

    CAS  Google Scholar 

  7. List, B., Lerner, R.A. & Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 122, 2395–2396 (2000).

    CAS  Google Scholar 

  8. Ahrendt, K.A., Borths, C.J. & MacMillan, D.W.C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000).

    CAS  Google Scholar 

  9. Bertelsen, S., Marigo, M., Brandes, S., Dinér, P. & Jørgensen, K.A. Dienamine catalysis: organocatalytic asymmetric γ-amination of α,β-unsaturated aldehydes. J. Am. Chem. Soc. 128, 12973–12980 (2006).

    Article  CAS  Google Scholar 

  10. Jia, Z.-J. et al. Trienamines in asymmetric organocatalysis: Diels-Alder and tandem reactions. J. Am. Chem. Soc. 133, 5053–5061 (2011).

    Article  CAS  Google Scholar 

  11. Jiang, L. & Chen, Y.-C. Recent advances in asymmetric catalysis with cinchona alkaloid-based primary amines. Catal. Sci. Technol. 1, 354–365 (2011).

    Article  CAS  Google Scholar 

  12. Bartoli, G. & Melchiorre, P. A novel organocatalytic tool for the iminium activation of α,β-unsaturated ketones. Synlett 1759–1772 (2008).

  13. Sidorowicz, Ł. & Skarżewski, J. Easy access to 9-epimers of cinchona alkaloids: one-pot inversion by Mitsunobu esterification-saponification. Synthesis 708–710 (2011).

  14. He, W., Liu, P., Zhang, B.L., Sun, X.L. & Zhang, S.Y. Efficient iridium and rhodium-catalyzed asymmetric transfer hydrogenation using 9-amino (9-deoxy) cinchona alkaloids as chiral ligands. Appl. Organomet. Chem. 20, 328–334 (2006).

    Article  CAS  Google Scholar 

  15. Brunner, H., Bugler, J. & Nuber, B. Enantioselective catalysis 98. Preparation of 9-amino-(9-deoxy)cinchona alkaloids. Tetrahedron Asymmetry 6, 1699–1702 (1995).

    Article  CAS  Google Scholar 

  16. Sundermeier, U., Döbler, C., Mehltretter, G.M., Baumann, W. & Beller, M. Synthesis of 9-N-cinchona alkaloid peptide hybrid derivatives: preparation and conformational study of 9-N-acylamino(9-deoxy)cinchona alkaloids. Chirality 15, 127–134 (2003).

    Article  CAS  Google Scholar 

  17. Vakulya, B., Varga, S., Csampai, A. & Soos, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org. Lett. 7, 1967–1969 (2005).

    Article  CAS  Google Scholar 

  18. He, W., Zhang, B., Liu, P., Sun, X. & Zhang, S. Synthesis of chiral diamine ligands derived from cinchona alkaloids and their catalytic performance for asymmetric transfer hydrogenation. Chin. J. Catal. 27, 527–531 (2006).

    Article  CAS  Google Scholar 

  19. McCooey, S.H. & Connon, S.J. Readily accessible 9-epi-amino cinchona alkaloid derivatives promote efficient, highly enantioselective additions of aldehydes and ketones to nitroolefins. Org. Lett. 9, 599–602 (2007).

    Article  CAS  Google Scholar 

  20. Melchiorre, P. Cinchona-based primary amine catalysis in the asymmetric functionalization of carbonyl compounds. Angew. Chem. Int. Ed. 51, 9748–9770 (2012).

    Article  CAS  Google Scholar 

  21. Bartoli, G. et al. Organocatalytic asymmetric Friedel-Crafts alkylation of indoles with simple α,β-unsaturated ketones. Org. Lett. 9, 1403–1405 (2007).

    Article  CAS  Google Scholar 

  22. Lu, X. & Deng, L. Asymmetric aza-Michael reactions of α,β-unsaturated ketones with bifunctional organic catalysts. Angew. Chem. Int. Ed. 47, 7710–7713 (2008).

    Article  CAS  Google Scholar 

  23. Lu, X., Liu, Y., Sun, B., Cindric, B. & Deng, L. Catalytic enantioselective peroxidation of α,β-unsaturated ketones. J. Am. Chem. Soc. 130, 8134–8135 (2008).

    Article  CAS  Google Scholar 

  24. Galzerano, P., Pesciaioli, F., Mazzanti, A., Bartoli, G. & Melchiorre, P. Asymmetric organocatalytic cascade reactions with α-substituted α,β-unsaturated aldehydes. Angew. Chem. Int. Ed. 48, 7892–7894 (2009).

    Article  CAS  Google Scholar 

  25. Pesciaioli, F. et al. Organocatalytic asymmetric aziridination of enones. Angew. Chem. Int. Ed. 47, 8703–8706 (2008).

    Article  CAS  Google Scholar 

  26. De Vincentiis, F et al. Asymmetric catalytic aziridination of cyclic enones. Chem. Asian J. 5, 1652–1656 (2010).

    Article  CAS  Google Scholar 

  27. Zhang, E., Fan, C.-A., Tu, Y.-Q., Zhang, F.-M. & Song, Y.-L. Organocatalytic asymmetric vinylogous α-ketol rearrangement: enantioselective construction of chiral all-carbon quaternary stereocenters in spirocyclic diketones via semipinacol-type 1,2-carbon migration. J. Am. Chem. Soc. 131, 14626–14627 (2009).

    Article  CAS  Google Scholar 

  28. Lifchits, O., Reisinger, C.M. & List, B. Catalytic asymmetric epoxidation of α-branched enals. J. Am. Chem. Soc. 132, 10227–10229 (2010).

    Article  CAS  Google Scholar 

  29. Lv, J., Zhang, J., Lin, Z. & Wang, Y. Enantioselective synthesis of functionalized nitrocyclopropanes by organocatalytic conjugate addition of bromonitroalkanes to α,β-unsaturated enones. Chem. Eur. J. 15, 972–979 (2009).

    Article  CAS  Google Scholar 

  30. Zhou, J., Wakchaure, V., Kraft, P. & List, B. Primary-amine-catalyzed enantioselective intramolecular aldolizations. Angew. Chem. Int. Ed. 47, 7656–7658 (2008).

    Article  CAS  Google Scholar 

  31. Bencivenni, G. et al. Targeting structural and stereochemical complexity by organocascade catalysis: construction of spirocyclic oxindoles having multiple stereocenters. Angew. Chem. Int. Ed. 48, 7200–7203 (2009).

    Article  CAS  Google Scholar 

  32. Wu, L.-Y. et al. Organocascade reactions of enones catalyzed by a chiral primary amine. Angew. Chem. Int. Ed. 48, 7196–7199 (2009).

    Article  CAS  Google Scholar 

  33. Kwiatkowski, P., Beeson, T.D., Conrad, J.C. & MacMillan, D.W.C. Enantioselective organocatalytic α-fluorination of cyclic ketones. J. Am. Chem. Soc. 133, 1738–1741 (2011).

    Article  CAS  Google Scholar 

  34. Bencivenni, G., Galzerano, P., Mazzanti, A., Bartoli, G. & Melchiorre, P. Direct asymmetric vinylogous Michael addition of cyclic enones to nitroalkenes via dienamine catalysis. Proc. Natl. Acad. Sci. USA 107, 20642–20647 (2010).

    Article  CAS  Google Scholar 

  35. Bergonzini, G., Vera, S. & Melchiorre, P. Cooperative organocatalysis for the asymmetric γ alkylation of α-branched enals. Angew. Chem. Int. Ed. 49, 9685–9688 (2010).

    Article  CAS  Google Scholar 

  36. Xiong, X.-F. et al. Trienamine catalysis with 2,4-dienones: development and application in asymmetric Diels-Alder reactions. Angew. Chem. Int. Ed. 51, 4401–4404 (2012).

    Article  CAS  Google Scholar 

  37. Kotke, M. & Schreiner, P.R. (Thio)urea organocatalysts. in Hydrogen Bonding in Organic Synthesis (ed. Pihko, P.M.) 141–351 (Wiley-VCH, 2009).

  38. Connon, S.J. Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts. Chem. Commun. 14, 2499–2510 (2008).

    Article  Google Scholar 

  39. Tian, X. et al. Diastereodivergent asymmetric sulfa-Michael additions of α-branched enones using a single chiral organic catalyst. J. Am. Chem. Soc. 133, 17934–17941 (2011).

    Article  CAS  Google Scholar 

  40. Dijkstra, G.D.H. et al. Conformational study of cinchona alkaloids. A combined NMR, molecular mechanics and X-ray approach. J. Am. Chem. Soc. 111, 8069–8076 (1989).

    Article  CAS  Google Scholar 

  41. Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1–28 (1981).

  42. Swamy, K.C.K., Kumar, N.N.B., Balaraman, E. & Kumar, K.V.P.P. Mitsunobu and related reactions: advances and applications. Chem. Rev. 109, 2551–2651 (2009).

    Article  CAS  Google Scholar 

  43. Simon, C., Hosztafi, S. & Makleit, S. Application of the Mitsunobu reaction in the field of alkaloids. J. Heterocyclic Chem. 34, 349–365 (1997).

    Article  CAS  Google Scholar 

  44. Staudinger, H. & Meyer, J. Ueber neue organische Phosphorverbindungen II. Phosphazine. Helv. Chim. Acta 2, 619–635 (1919).

    Article  CAS  Google Scholar 

  45. Wang, Y., Liu, X. & Deng, L. Dual-function cinchona alkaloid catalysis: catalytic asymmetric tandem conjugate additionprotonation for the direct creation of nonadjacent stereocenters. J. Am. Chem. Soc. 128, 3928–3930 (2006).

    Article  CAS  Google Scholar 

  46. Chen, W. et al. Enantioselective 1,3-dipolar cycloaddition of cyclic enones catalyzed by multifunctional primary amines: Beneficial effects of hydrogen bonding. Angew. Chem. Int. Ed. 46, 7667–7670 (2007).

    Article  CAS  Google Scholar 

  47. Trost, B. The atom economy-a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  Google Scholar 

  48. Kucerovy, A., Li, T., Prasad, K., Repič, O. & Blacklock, T.J. An efficient large-scale synthesis of methyl 5-[2-(2,5-dimethoxyphenyl)ethyl]-2-hydroxybenzoate. Org. Process Res. Dev. 1, 287–293 (1997).

    Article  CAS  Google Scholar 

  49. Ainge, D., Ennis, D., Gidlund, M., Stefinovic, M. & Vaz, L.-M. Rapid development of an enantioselective synthesis of (R)-1-hydroxy-7-methoxy-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid. Org. Process Res. Dev. 7, 198–201 (2003).

    Article  CAS  Google Scholar 

  50. Königsberger, K. et al. A practical synthesis of 6-[2-(2,5-dimethoxyphenyl)ethyl]-4-ethylquinazoline and the art of removing palladium from the products of Pd-catalyzed reactions. Org. Process Res. Dev. 7, 733–742 (2003).

    Article  Google Scholar 

  51. Franz, M.H., Röper, S., Wartchow, R. & Hoffmann, H.M.R. The first and second cinchona rearrangement. two fundamental transformations of alkaloid chemistry. J. Org. Chem. 69, 2983–2991 (2004).

    Article  CAS  Google Scholar 

  52. Kacprzak, K. & Gierczyk, B. Clickable 9-azido-(9-deoxy)-cinchona alkaloids: synthesis and conformation. Tetrahedron Asymmetry 21, 2740–2745 (2010).

    Article  CAS  Google Scholar 

  53. Enders, D. & Müller-Hüwen, A. Asymmetric synthesis of 2-amino-1,3-diols and D-erythro-Sphinganine. Eur. J. Org. Chem 2004, 1732–1739 (2004).

    Article  Google Scholar 

  54. Jeong, J.W. et al. A substrate mimetic approach for influenza neuraminidase inhibitors. Bull. Korean Chem. Soc. 25, 1575–1577 (2004).

    Article  CAS  Google Scholar 

  55. Busscher, G.F., van den Broek, S.A.M.W., Rutjes, F.P.J.T. & van Delft, F.L. Carbohydrate mimic of 2-deoxystreptamine for the preparation of conformationally constrained aminoglycosides. Tetrahedron 63, 3183–3188 (2007).

    Article  CAS  Google Scholar 

  56. Neumann, J. & Thiem, J. Synthesis of amino-bridged oligosaccharide mimetics. Eur. J. Org. Chem. 2010, 900–908 (2010).

    Article  Google Scholar 

  57. Chae, J. Practical demethylation of aryl methyl ethers using an odorless thiol reagent. Arch. Pharm. Res. 31, 305–309 (2008).

    Article  CAS  Google Scholar 

  58. Xu, F. et al. Asymmetric synthesis of a potent, aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV inhibitor. J. Org. Chem. 75, 1343–1353 (2010).

    Article  CAS  Google Scholar 

  59. Bräse, S., Gil, C., Knepper, K. & Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 44, 5188–5240 (2005).

    Article  Google Scholar 

  60. Nielsen, M.A., Nielsen, M.K. & Pittelkow, T. Scale-up and safety evaluation of a Sandmeyer reaction. Org. Process Res. Dev. 8, 1059–1064 (2004).

    Article  CAS  Google Scholar 

  61. Mickel, S.J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: Synthetic strategy and preparation of a common precursor. Org. Process Res. Dev. 8, 92–100 (2003).

    Article  Google Scholar 

  62. Kopach, M.E., Murray, M.M., Braden, T.M., Kobierski, M.E. & Williams, O.L. Improved synthesis of 1-(azidomethyl)-3,5-bis-(trifluoromethyl)benzene: development of batch and microflow azide processes. Org. Process Res. Dev. 13, 152–160 (2009).

    Article  CAS  Google Scholar 

  63. Scott, J.P. et al. Mitsunobu inversion of a secondary alcohol with diphenylphosphoryl azide. Application to the enantioselective multikilogram synthesis of a HCV polymerase inhibitor. Org. Process Res. Dev. 15, 1116–1123 (2011).

    Article  CAS  Google Scholar 

  64. Conrow, R.E. & Dean, W.D. Diazidomethane explosion. Org. Process Res. Dev. 12, 1285–1286 (2008).

    Article  CAS  Google Scholar 

  65. am Ende, D.J. & Vogt, P.F. Safety notables: information from the literature. Org. Process Res. Dev. 8, 1045–1048 (2004).

    Article  CAS  Google Scholar 

  66. Gálvez, N., Moreno-Mañas, M., Sebastián, R.M. & Vallribera, A. Dimethoxyethane as an alternative solvent for Schmidt reactions. Preparation of homochiral N-(5-oxazolyl)oxazolidinones from N-acetoacetyl derivatives of oxazolidinones. Tetrahedron 52, 1609–1616 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the ICIQ's NMR service for low-temperature 13C NMR, the ICIQ's Chemical Reaction Technologies Unit for technical support in performing pressurized hydrogenation reactions and the ICIQ's Chromatography, Thermal Analysis and Electrochemistry Unit for technical support in DSC analysis. Research support from the ICIQ Foundation, Ministerio de Ciencia e Innovación (MICINN) (grant no. CTQ2010-15513 and A Formación de Personal Investigador (FPI) predoctoral fellowship to C.C.) and the European Research Council (ERC starting grant agreement no. 278541 – ORGA-NAUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Synthetic work was carried out by C.C., R.M.-R. and F.B.; experimental procedure development and assembly of the manuscript was performed by C.C., R.M.-R., E.A., F.B. and P.M.

Corresponding authors

Correspondence to Fernando Bravo or Paolo Melchiorre.

Ethics declarations

Competing interests

F.B., R.M-R. and P.M. have filed a patent application describing Approach 2 discussed in this protocol (application number EP12382291).

Supplementary information

Supplementary Data

1H NMR and 13C spectra of the products (PDF 1376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassani, C., Martín-Rapún, R., Arceo, E. et al. Synthesis of 9-amino(9-deoxy)epi cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds. Nat Protoc 8, 325–344 (2013). https://doi.org/10.1038/nprot.2012.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.155

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing