Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Investigating conversion of mechanical force into biochemical signaling in three-dimensional chondrocyte cultures

Abstract

The culture of chondrocytes embedded within agarose hydrogels maintains chondrocytic phenotype over extended periods and allows analysis of the chondrocyte response to mechanical forces. The mechanisms involved in the transduction of a mechanical stimulus to a physiological process are not completely deciphered. We present protocols to prepare and characterize constructs of murine chondrocytes and agarose (1 week pre-culture period), to analyze the effect of compression on mRNA level by RT-PCR (2–3 d), gene transcription by gene reporter assay (3 d) and phosphorylation state of signaling molecules by western blotting (3–4 d). The protocols can be carried out with a limited number of mouse embryos or newborns and this point is particularly important regarding genetically modified mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Embedding and culture of mouse chondrocytes in agarose gel.
Figure 2: Immunohistological analysis of extracellular matrix deposition in chondrocytes cultured in agarose gels over 6 d.
Figure 3: Compression device.
Figure 5: Analysis of gene expression regulation in chondrocytes embedded in agarose gels submitted to dynamic compression.
Figure 6: Analysis of the activation of MAP (mitogen-activated protein) kinases in chondrocytes embedded in agarose gels subjected to dynamic compression.
Figure 7: Analysis of the activity of the COL2A1 gene promoter in chondrocytes embedded in agarose gels immediately after being subjected to dynamic loading at 0.2 Hz for 30 min.
Figure 4

Similar content being viewed by others

References

  1. Fermor, B. et al. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J. Orthop. Res. 19, 729–737 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Gosset, M. et al. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Res. Ther. 8, R135 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xie, J., Han, Z.Y. & Matsuda, T. Mechanical compressive loading stimulates the activity of proximal region of human COL2A1 gene promoter in transfected chondrocytes. Biochem. Biophys. Res. Commun. 344, 1192–1199 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Quinn, T.M. et al. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J. Cell Sci. 111 (Part 5): 573–583 (1998).

    CAS  PubMed  Google Scholar 

  5. Fitzgerald, J.B. et al. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J. Biol. Chem. 279, 19502–19511 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Sah, R.L. et al. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Parkkinen, J.J., Lammi, M.J., Helminen, H.J. & Tammi, M. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro . J. Orthop. Res. 10, 610–620 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Sauerland, K., Raiss, R.X. & Steinmeyer, J. Proteoglycan metabolism and viability of articular cartilage explants as modulated by the frequency of intermittent loading. Osteoarthr. Cartil. 11, 343–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Tomiyama, T. et al. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J. Rheumatol. 34, 556–562 (2007).

    CAS  PubMed  Google Scholar 

  10. Wong, M., Siegrist, M. & Cao, X. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol. 18, 391–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Buschmann, M.D., Gluzband, Y.A., Grodzinsky, A.J. & Hunziker, E.B. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108 (Part 4): 1497–1508 (1995).

    CAS  PubMed  Google Scholar 

  12. Kelly, T.A. et al. Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J. Biomech. 39, 1489–1497 (2006).

    Article  PubMed  Google Scholar 

  13. Toyoda, T. et al. Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis Rheum. 48, 2865–2872 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Mauck, R.L. et al. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9, 597–611 (2003).

    Article  CAS  Google Scholar 

  15. Chowdhury, T.T., Bader, D.L., Shelton, J.C. & Lee, D.A. Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch. Biochem. Biophys. 417, 105–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Benya, P.D. & Shaffer, J.D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Tschan, T. et al. Resting chondrocytes in culture survive without growth factors, but are sensitive to toxic oxygen metabolites. J. Cell Biol. 111, 257–260 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Mallein-Gerin, F. et al. Analysis of collagen synthesis and assembly in culture by immortalized mouse chondrocytes in the presence or absence of alpha 1(IX) collagen chains. Exp. Cell. Res. 219, 257–265 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Bougault, C., Paumier, A., Aubert-Foucher, E. & Mallein-Gerin, F. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol. 8, 71 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barlic, A. et al. Quantitative analysis of gene expression in human articular chondrocytes assigned for autologous implantation. J. Orthop. Res. 9, 9 (2008).

    Google Scholar 

  21. Huang, C.Y., Reuben, P.M. & Cheung, H.S. Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23, 1113–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Mauck, R.L., Byers, B.A., Yuan, X. & Tuan, R.S. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech. Model. Mechanobiol. 6, 113–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Guilak, F. et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. NY Acad. Sci. 1068, 498–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, A.H., Yeger-Mckeever, M., Stein, A. & Mauck, R.L. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. Osteoarthr. Cartil. 16, 1074–1082 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyata, S., Tateishi, T. & Ushida, T. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading. J. Biomech. Eng. 130, 051016 (2008).

    Article  PubMed  Google Scholar 

  26. Knight, M.M., Lee, D.A. & Bader, D.L. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim. Biophys. Acta 1405, 67–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Gosset, M. et al. Mechanical stress and prostaglandin E(2) synthesis in cartilage. Biorheology 45, 301–320 (2008).

    PubMed  Google Scholar 

  28. Lee, D.A. & Bader, D.L. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15, 181–188 (1997).

    Article  PubMed  Google Scholar 

  29. Frank, E.H. et al. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J. Biomech. 33, 1523–1527 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Mauck, R.L. et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122, 252–260 (2000).

    Article  CAS  Google Scholar 

  31. Aymard, P. et al. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers 59, 131–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Q., Suki, B. & An, K.N. Dynamic mechanical properties of agarose gels modeled by a fractional derivative model. J. Biomech. Eng. 126, 666–671 (2004).

    Article  PubMed  Google Scholar 

  33. Saris, D.B. et al. Dynamic pressure transmission through agarose gels. Tissue Eng. 6, 531–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581–585 (2006).

    Article  CAS  Google Scholar 

  35. Mio, K., Kirkham, J. & Bonass, W.A. Tips for extracting total RNA from chondrocytes cultured in agarose gel using a silica-based membrane kit. Anal. Biochem. 351, 314–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Szuts, V. et al. Terminal differentiation of chondrocytes is arrested at distinct stages identified by their expression repertoire of marker genes. Matrix Biol. 17, 435–448 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Hoemann, C.D., Sun, J., Chrzanowski, V. & Buschmann, M.D. A multivalent assay to detect glycosaminoglycan, protein, collagen, RNA, and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage. Anal. Biochem. 300, 1–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, Y., Li, Q. & Chen, X.Z. Detecting protein–protein interactions by Far western blotting. Nat. Protoc. 2, 3278–3284 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Ghayor, C. et al. Regulation of human COL2A1 gene expression in chondrocytes. Identification of C-Krox-responsive elements and modulation by phenotype alteration. J. Biol. Chem. 275, 27421–27438 (2000).

    CAS  PubMed  Google Scholar 

  40. Lefebvre, V. et al. Characterization of primary cultures of chondrocytes from type II collagen/beta-galactosidase transgenic mice. Matrix Biol. 14, 329–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Valcourt, U. et al. Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J. Biol. Chem. 277, 33545–33558 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Gosset, M., Berenbaum, F., Thirion, S. & Jacques, C. Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3, 1253–1260 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Salvat, C. et al. Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthr. Cartil. 13, 243–249 (2005).

    Article  PubMed  Google Scholar 

  44. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic. Acids. Res. 29, e45 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sambrook, J., Fritsch, E.F. & Maniatis, T. Detection and analysis of proteins expressed from cloned genes. In Molecular Cloning: A Laboratory Manual 2nd edn 18.19–18.74 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  46. Lee, J.H., Fitzgerald, J.B., Dimicco, M.A. & Grodzinsky, A.J. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum. 52, 2386–2395 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Li, K.W., Wang, A.S. & Sah, R.L. Microenvironment regulation of extracellular signal-regulated kinase activity in chondrocytes: effects of culture configuration, interleukin-1, and compressive stress. Arthritis Rheum. 48, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Fanning, P.J. et al. Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J. Biol. Chem. 278, 50940–50948 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Nolan, T., Hands, R.E. & Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582 (2006).

    Article  CAS  Google Scholar 

  50. Mayne, R. et al. Monoclonal antibody to the aminotelopeptide of type II collagen: loss of the epitope after stromelysin digestion. Connect. Tissue Res. 31, 11–21 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Novotec (Lyon) for the generous gift of the anti-aggrecan antibody and the technical facilities of IFR 128 (BioSciences Gerland—Lyon Sud) for the quantitative PCR analyses. We are grateful to Karine Duroure for technical assistance. We also thank Professor Philippe Galéra (Caen University) for the gift of the p3 plasmid carrying a fragment of the human type II collagen gene promoter. This study was funded by Rhône-Alpes Region (Emergence 2005), ANR (TECSAN Promocart 2006), CNRS and the Lyon 1 University. C.B. was supported by the French Ministère de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Mallein-Gerin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bougault, C., Paumier, A., Aubert-Foucher, E. et al. Investigating conversion of mechanical force into biochemical signaling in three-dimensional chondrocyte cultures. Nat Protoc 4, 928–938 (2009). https://doi.org/10.1038/nprot.2009.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.63

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing