Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of iron–sulfur protein maturation in eukaryotes

Abstract

Iron–sulfur (Fe/S) proteins play crucial roles in living cells by participating in enzyme catalysis, electron transfer and the regulation of gene expression. The biosynthesis of the inorganic Fe/S centers and their insertion into apoproteins require complex cellular machinery located in the mitochondria (Fe/S cluster (ISC) assembly machinery systems) and cytosol (cytosolic Fe/S protein assembly (CIA) systems). Functional defects in Fe/S proteins or their biogenesis components lead to human diseases underscoring the functional importance of these inorganic cofactors for life. In this protocol, we describe currently available methods to follow the activity and de novo biogenesis of Fe/S proteins in eukaryotic cells. The assay systems are useful to follow Fe/S protein maturation in different cellular compartments, identify novel Fe/S proteins and their biogenesis factors, investigate the molecular mechanisms underlying the maturation process in vivo and analyze the effects of genetic mutations in Fe/S protein-related genes. Comprehensive analysis of one biogenesis component or target Fe/S protein takes about 10 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current model for Fe/S protein maturation in eukaryotes.
Figure 2: Experimental strategy of the in vivo 55Fe incorporation into Fe/S proteins.
Figure 3: Incorporation of 55Fe into yeast Fe/S proteins in vivo.

Similar content being viewed by others

References

  1. Beinert, H., Holm, R.H. & Münck, E. Iron–sulfur clusters: nature's modular, multipurpose structures. Science 277, 653–659 (1997).

    Article  CAS  Google Scholar 

  2. Johnson, D.C., Dean, D.R., Smith, A.D. & Johnson, M.K. Structure, function and formation of biological iron–sulfur clusters. Ann. Rev. Biochem. 74, 247–281 (2005).

    Article  CAS  Google Scholar 

  3. Lill, R. & Mühlenhoff, U. Maturation of iron–sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 77, 669–700 (2008).

    Article  CAS  Google Scholar 

  4. Ayala-Castro, C., Saini, A. & Outten, F.W. Fe–S cluster assembly pathways in bacteria. Microbiol. Mol. Biol. Rev. 72, 110–125 (2008).

    Article  CAS  Google Scholar 

  5. Lill, R. & Mühlenhoff, U. Iron–sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu. Rev. Cell Dev. Biol. 22, 457–486 (2006).

    Article  CAS  Google Scholar 

  6. Vickery, L.E. & Cupp-Vickery, J.R. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron–sulfur protein maturation. Crit. Rev. Biochem. Mol. Biol. 42, 95–111 (2007).

    Article  CAS  Google Scholar 

  7. Gelling, C., Dawes, I.W., Richhardt, N., Lill, R. & Mühlenhoff, U. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol. Cell Biol. 28, 1851–1861 (2008).

    Article  CAS  Google Scholar 

  8. Amutha, B. et al. GTP is required for iron–sulfur cluster biogenesis in mitochondria. J. Biol. Chem. 283, 1362–1371 (2008).

    Article  CAS  Google Scholar 

  9. Lill, R. et al. Mechanisms of iron–sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim. Biophys. Acta 1763, 652–667 (2006).

    Article  CAS  Google Scholar 

  10. Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are required for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989 (1999).

    Article  CAS  Google Scholar 

  11. Balk, J. & Lill, R. The cell's cookbook for iron–sulfur clusters: recipes for fool's gold? Chem. Biol. Chem. 5, 1044–1049 (2004).

    Article  CAS  Google Scholar 

  12. Netz, D.J., Pierik, A.J., Stümpfig, M., Mühlenhoff, U. & Lill, R. The Cfd1-Nbp35 complex acts as a scaffold for iron–sulfur protein assembly in the yeast cytosol. Nat. Chem. Biol. 3, 278–286 (2007).

    Article  CAS  Google Scholar 

  13. Balk, J., Pierik, A.J., Aguilar Netz, D., Mühlenhoff, U. & Lill, R. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO J. 23, 2105–2115 (2004).

    Article  CAS  Google Scholar 

  14. Balk, J., Aguilar Netz, D.J., Tepper, K., Pierik, A.J. & Lill, R. The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron–sulfur protein assembly. Mol. Cell Biol. 25, 10833–10841 (2005).

    Article  CAS  Google Scholar 

  15. Zhang, Y. et al. Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol. Cell Biol. 28, 5569–5582 (2008).

    Article  CAS  Google Scholar 

  16. Lill, R. & Mühlenhoff, U. Iron–sulfur protein biogenesis in eukaryotes. Trends Biochem. Sci. 30, 133–141 (2005).

    Article  CAS  Google Scholar 

  17. Stehling, O., Elsässer, H.P., Brückel, B., Mühlenhoff, U. & Lill, R. Iron–sulfur protein maturation in human cells: evidence for a function of frataxin. Hum. Mol. Genet. 13, 3007–3015 (2004).

    Article  CAS  Google Scholar 

  18. Wingert, R.A. et al. Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature 436, 1035–1039 (2005).

    Article  CAS  Google Scholar 

  19. Biederbick, A. et al. Role of human mitochondrial Nfs1 in cytosolic iron–sulfur protein biogenesis and iron regulation. Mol. Cell Biol. 26, 5675–5687 (2006).

    Article  CAS  Google Scholar 

  20. Pondarré, C. et al. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron–sulphur cluster biogenesis. Hum. Mol. Genet. 15, 953–964 (2006).

    Article  Google Scholar 

  21. Tong, W.H. & Rouault, T.A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron–sulfur cluster biogenesis and iron homeostasis. Cell Metab. 3, 199–210 (2006).

    Article  CAS  Google Scholar 

  22. Song, D. & Lee, F.S. A role for IOP1 in mammalian cytosolic iron–sulfur protein biogenesis. J. Biol. Chem. 283, 9231–9238 (2008).

    Article  CAS  Google Scholar 

  23. Stehling, O. et al. Human Nbp35 is essential for both cytosolic iron–sulfur protein assembly and iron homeostasis. Mol. Cell Biol. 28, 5517–5528 (2008).

    Article  CAS  Google Scholar 

  24. Rouault, T.A. & Tong, W.H. Iron–sulfur cluster biogenesis and human disease. Trends Genet. 24, 398–407 (2008).

    Article  CAS  Google Scholar 

  25. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  Google Scholar 

  26. Camaschella, C. et al. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110, 1353–1358 (2007).

    Article  CAS  Google Scholar 

  27. Mochel, F. et al. Splice mutation in the iron–sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am. J. Hum. Genet. 82, 652–660 (2008).

    Article  CAS  Google Scholar 

  28. Olsson, A., Lind, L., Thornell, L.E. & Holmberg, M. Myopathy with lactic acidosis is linked to chromosome 12q23.3–24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect. Hum. Mol. Genet. 17, 1666–1672 (2008).

    Article  CAS  Google Scholar 

  29. Kispal, G. et al. Biogenesis of cytosolic ribosomes requires the essential iron–sulphur protein Rli1p and mitochondria. EMBO J. 24, 589–598 (2005).

    Article  CAS  Google Scholar 

  30. Klinge, S., Hirst, J., Maman, J.D., Krude, T. & Pellegrini, L. An iron–sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 14, 875–877 (2007).

    Article  CAS  Google Scholar 

  31. Rudolf, J., Makrantoni, V., Ingledew, W.J., Stark, M.J. & White, M.F. The DNA repair helicases XPD and FancJ have essential iron–sulfur domains. Mol. Cell 23, 801–808 (2006).

    Article  CAS  Google Scholar 

  32. Yarunin, A., Panse, V., Petfalski, E., Tollervey, D. & Hurt, E. Functional link between ribosome formation and biogenesis of iron–sulfur proteins. EMBO J. 24, 580–588 (2005).

    Article  CAS  Google Scholar 

  33. Sung, P. et al. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852–855 (1993).

    Article  CAS  Google Scholar 

  34. Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008).

    Article  CAS  Google Scholar 

  35. Petillot, Y., Forest, E., Mathieu, I., Meyer, J. & Moulis, J.-M. Analysis, by electrospray ionization mass spectrometry, of several forms of Clostridium pasteurianum rubredoxin. Biochem. J. 296, 657–661 (1993).

    Article  CAS  Google Scholar 

  36. Ramelot, T.A. et al. Solution NMR structure of the iron–sulfur cluster assembly protein U (IscU) with zinc bound at the active site. J. Mol. Biol. 344, 567–583 (2004).

    Article  CAS  Google Scholar 

  37. Mühlenhoff, U., Gerber, J., Richhardt, N. & Lill, R. Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815–4825 (2003).

    Article  Google Scholar 

  38. Molik, S., Lill, R. & Mühlenhoff, U. Methods for studying iron metabolism in yeast mitochondria. Methods Cell Biol. 80, 261–280 (2007).

    Article  CAS  Google Scholar 

  39. Stehling, O. et al. Investigation of iron-sulfur protein maturation in eukaryotes. In Methods in Molecular Biology (eds. Leister, D. & Herrmann, J.M.) 325–342 (Humana Press Inc., Totowa, NJ, 2007).

    Google Scholar 

  40. Lutz, T., Westermann, B., Neupert, W. & Herrmann, J.M. The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J. Mol. Biol. 307, 815–825 (2001).

    Article  CAS  Google Scholar 

  41. Dos Santos, P.C., Johnson, D.C., Ragle, B.E., Unciuleac, M.-C. & Dean, D.R. Controlled expression of nif and isc iron–sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J. Bacteriol. 189, 2854–2862 (2007).

    Article  CAS  Google Scholar 

  42. Raulfs, E.C., O'Carroll, I.P., Dos Santos, P.C., Unciuleac, M.C. & Dean, D.R. In vivo iron–sulfur cluster formation. Proc. Natl. Acad. Sci. USA 105, 8591–8596 (2008).

    Article  CAS  Google Scholar 

  43. Haile, D.J. et al. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron–sulfur cluster results in high-affinity RNA binding. Proc. Natl. Acad. Sci. USA 89, 11735–11739 (1992).

    Article  CAS  Google Scholar 

  44. Strain, J. et al. Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron–sulfur cluster assembly. J. Biol. Chem. 273, 31138–31144 (1998).

    Article  CAS  Google Scholar 

  45. Rabinowitz, J.C. Analysis of acid-labile sulfide and sulfhydryl groups. Methods Enzymol. 53, 275–277 (1978).

    Article  CAS  Google Scholar 

  46. Thomas, D., Barbey, R., Henry, D. & Surdin-Kerjan, Y. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J. Gen. Microbiol. 138, 2021–2028 (1992).

    Article  CAS  Google Scholar 

  47. De Winde, J.H. & Grivell, L.A. Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae . Prog. Nucleic Acid Res. Mol. Biol. 46, 51–91 (1993).

    Article  CAS  Google Scholar 

  48. Mendel, R.R., Smith, A.G., Marquet, A. & Warren, M.J. Metal and cofactor insertion. Nat. Prod. Rep. 24, 963–971 (2007).

    Article  CAS  Google Scholar 

  49. Hirata, A., Klein, B.J. & Murakami, K.S. The X-ray crystal structure of RNA polymerase from Archaea. Nature 451, 851–854 (2008).

    Article  CAS  Google Scholar 

  50. Roy, A., Solodovnikova, N., Nicholson, T., Antholine, W. & Walden, W.E. A novel eukaryotic factor for cytosolic Fe–S cluster assembly. EMBO J. 22, 4826–4835 (2003).

    Article  CAS  Google Scholar 

  51. Lange, H., Kaut, A., Kispal, G. & Lill, R. A mitochondrial ferredoxin is essential for biogenesis of cellular iron–sulfur proteins. Proc. Natl. Acad. Sci. USA 97, 1050–1055 (2000).

    Article  CAS  Google Scholar 

  52. Mühlenhoff, U., Richhardt, N., Gerber, J. & Lill, R. Characterization of iron–sulfur protein assembly in isolated mitochondria: a requirement for ATP, NADH and reduced iron. J. Biol. Chem. 277, 29810–29816 (2002).

    Article  Google Scholar 

  53. Van Ammel, R., Pommé, S. & Sibbens, G. Half-life measurement of 55Fe. Appl. Radiat. Isot. 64, 1412–1416 (2006).

    Article  CAS  Google Scholar 

  54. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  55. Hausmann, A. et al. The eukaryotic P-loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron–sulfur protein assembly machinery. Proc. Natl. Acad. Sci. USA 102, 3266–3271 (2005).

    Article  CAS  Google Scholar 

  56. Funk, M. et al. Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae . Methods Enzymol. 350, 248–257 (2002).

    Article  CAS  Google Scholar 

  57. Lange, H., Kispal, G. & Lill, R. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J. Biol. Chem. 274, 18989–18996 (1999).

    Article  CAS  Google Scholar 

  58. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  Google Scholar 

  59. Belli, G., Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res. 26, 942–947 (1998).

    Article  CAS  Google Scholar 

  60. Kanemaki, M., Sanchez-Diaz, A., Gambus, A. & Labib, K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo . Nature 423, 720–724 (2003).

    Article  CAS  Google Scholar 

  61. Ben-Aroya, S. et al. Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae . Mol. Cell 30, 248–258 (2008).

    Article  CAS  Google Scholar 

  62. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    Article  CAS  Google Scholar 

  63. Siu, F.K., Lee, L.T. & Chow, B.K. Southwestern blotting in investigating transcriptional regulation. Nat. Protoc. 3, 51–58 (2008).

    Article  CAS  Google Scholar 

  64. Sherman, F. Getting started with yeast. Methods Enzymol. 350, 3–41 (2002).

    Article  CAS  Google Scholar 

  65. Pierik, A.J., Wolbert, R.B.G., Mutsaers, P.H.A., Hagen, W.R. & Veeger, C. Purification and biochemical characterization of a putative [6Fe–6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 206, 697–704 (1992).

    Article  CAS  Google Scholar 

  66. Gietz, R.D. & Woods, R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87–96 (2002).

    Article  CAS  Google Scholar 

  67. Gibson, J.A. & Marshall, M. The counting efficiency for 55Fe and other E.C. nuclides in liquid scintillator solutions. Int. J. Appl. Radiat. Isot. 23, 321–328 (1972).

    Article  CAS  Google Scholar 

  68. Mühlenhoff, U., Richhardt, N., Ristow, M., Kispal, G. & Lill, R. The yeast frataxin homologue Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum. Mol. Genet. 11, 2025–2036 (2002).

    Article  Google Scholar 

  69. Wallace, M.A. et al. Superoxide inhibits 4Fe–4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J. Biol. Chem. 279, 32055–32062 (2004).

    Article  CAS  Google Scholar 

  70. Valenzuela, L., Ballario, P., Aranda, C., Filetici, P. & Gonzalez, A. Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae . J. Bacteriol. 180, 3533–3540 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pelzer, W. et al. Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron–sulfur proteins. FEBS Lett. 476, 134–139 (2000).

    Article  CAS  Google Scholar 

  72. Barros, M.H., Nobrega, F.G. & Tzagoloff, A. Mitochondrial ferredoxin is required for heme A synthesis in Saccharomyces cerevisiae . J. Biol. Chem. 277, 9997–10002 (2002).

    Article  CAS  Google Scholar 

  73. Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  74. Diekert, K., deKroon, A.I.P.M., Kispal, G. & Lill, R. Isolation and sub-fractionation of mitochondria from the yeast Saccharomyces cerevisiae . Methods Cell Biol. 65, 37–51 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge generous support from Deutsche Forschungsgemeinschaft (SFB 593 and TR1, Gottfried-Wilhelm Leibniz program, and GRK 1216), the German–Israeli Foundation (GIF), Rhön Klinikum AG, von Behring-Röntgen Stiftung, Max-Planck Gesellschaft, Alexander-von-Humboldt Stiftung and Fonds der chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Lill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierik, A., Netz, D. & Lill, R. Analysis of iron–sulfur protein maturation in eukaryotes. Nat Protoc 4, 753–766 (2009). https://doi.org/10.1038/nprot.2009.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.39

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing