Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Selection of human antibody fragments by phage display

Abstract

Here, we describe a protocol for the selection of human antibody fragments using repertoires displayed on filamentous bacteriophage. Antigen-specific clones are enriched by binding to immobilized antigen, followed by elution and repropagation of phage. After multiple rounds of binding selection, specific clones are identified by ELISA. This article provides an overview of phage display and antibody technology, as well as detailed protocols for the immobilization of antigen, the selection of repertoires on purified or complex antigens and the identification of binders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phage display of antibody fragments.
Figure 2: Selection of antibody repertoire.
Figure 3: Monoclonal phage ELISA.
Figure 4: Anticipated results for monoclonal phage ELISA.

Similar content being viewed by others

References

  1. Choo, Y. & Klug, A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Natl. Acad. Sci. USA 91, 11163–11167 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Hiipakka, M., Poikonen, K. & Saksela, K. SH3 domains with high affinity and engineered ligand specificities targeted to HIV-1 Nef. J. Mol. Biol. 293, 1097–1106 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Bass, S., Greene, R. & Wells, J.A. Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins 8, 309–314 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Demartis, S. et al. A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. J. Mol. Biol. 286, 617–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Heinis, C. et al. Selection of catalytically active biotin ligase and trypsin mutants by phage display. Protein Eng. 14, 1043–1052 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Christ, D. & Winter, G. Identification of protein domains by shotgun proteolysis. J. Mol. Biol. 358, 364–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Hwang, W.Y. & Foote, J. Immunogenicity of engineered antibodies. Methods 36, 3–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Ascione, A. et al. Application of a synthetic phage antibody library (ETH-2) for the isolation of single chain fragment variable (scFv) human antibodies to the pathogenic isoform of the hamster prion protein (HaPrPsc). Hybridoma 24, 127–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Rahman, Q.K., Berzins, K., Lopez, M.C. & Fernandez, C. Breaking the non-responsiveness of C57BL/6 mice to the malarial antigen EB200—the role of carrier and adjuvant molecules. Scand. J. Immunol. 58, 395–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Srinivas, G.R., Chichester, C.O., Barrach, H.J., Pillai, V. & Matoney, A.L. Production of type II collagen specific monoclonal antibodies. Immunol. Invest. 23, 85–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Birch, J.R. & Racher, A.J. Antibody production. Adv. Drug Deliv. Rev. 58, 671–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. McCafferty, J., Griffiths, A.D., Winter, G. & Chiswell, D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Ilyichev, A.A. et al. Inserting foreign peptides into the major coat protein of bacteriophage M13. FEBS Lett. 301, 322–324 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Il'ichev, A.A. et al. Production of a viable variant of the M13 phage with a foreign peptide inserted into the basic coat protein. Dokl. Akad. Nauk. SSSR 307, 481–483 (1989).

    CAS  PubMed  Google Scholar 

  17. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. & Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Griffiths, A.D. et al. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lorenz, H.M. Technology evaluation: adalimumab, Abbott laboratories. Curr. Opin. Mol. Ther. 4, 185–190 (2002).

    CAS  PubMed  Google Scholar 

  20. Christ, D., Famm, K. & Winter, G. Repertoires of aggregation-resistant human antibody domains. Protein Eng. Des. Sel. 20, 413–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Barbas, C.F. 3rd, Kang, A.S., Lerner, R.A. & Benkovic, S.J. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoogenboom, H.R. et al. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lowman, H.B., Bass, S.H., Simpson, N. & Wells, J.A. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry 30, 10832–10838 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Garrard, L.J., Yang, M., O'Connell, M.P., Kelley, R.F. & Henner, D.J. Fab assembly and enrichment in a monovalent phage display system. Biotechnology (NY) 9, 1373–1377 (1991).

    Article  CAS  Google Scholar 

  25. O'Connell, D., Becerril, B., Roy-Burman, A., Daws, M. & Marks, J.D. Phage versus phagemid libraries for generation of human monoclonal antibodies. J. Mol. Biol. 321, 49–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Skerra, A. & Pluckthun, A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Bird, R.E. et al. Single-chain antigen-binding proteins. Science 242, 423–426 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Huston, J.S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choy, E.H. et al. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. Rheumatology (Oxford) 41, 1133–1137 (2002).

    Article  CAS  Google Scholar 

  30. Ward, E.S., Gussow, D., Griffiths, A.D., Jones, P.T. & Winter, G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544–546 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Jones, H.B. On a new substance occurring in the urine of a patient with mollities ossium. Philos. Trans. R. Soc. Lond. 138, 55–62 (1848).

    Article  Google Scholar 

  32. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Roux, K.H. et al. Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Proc. Natl. Acad. Sci. USA 95, 11804–11809 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nuttall, S.D. et al. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol. Immunol. 38, 313–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Holt, L.J., Herring, C., Jespers, L.S., Woolven, B.P. & Tomlinson, I.M. Domain antibodies: proteins for therapy. Trends Biotechnol. 21, 484–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Christ, D., Famm, K. & Winter, G. Tapping diversity lost in transformations—in vitro amplification of ligation reactions. Nucleic Acids Res. 34, e108 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kristensen, P. & Winter, G. Proteolytic selection for protein folding using filamentous bacteriophages. Fold. Des. 3, 321–328 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Protocols are based on methods originally developed by D. Christ and others in Greg Winter's group at the MRC Laboratory of Molecular Biology and were modified in our laboratory at the Garvan Institute. D.C. was a Fellow of Trinity College (Cambridge University) from 2002 to 2006. This work was funded by a Cancer Institute NSW grant (07/RFG/1-12) to D.C. and a Cancer Institute NSW Early Career Fellowship to F.S. We thank G. Winter for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Christ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., Iorno, N., Sierro, F. et al. Selection of human antibody fragments by phage display. Nat Protoc 2, 3001–3008 (2007). https://doi.org/10.1038/nprot.2007.448

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.448

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing