Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles

Abstract

Observation of immune and stem cells in their native microenvironments requires the development of imaging agents to allow their in vivo tracking. We describe here the synthesis of magnetofluorescent nanoparticles for cell labeling in vitro and for multimodality imaging of administered cells in vivo. MION-47, a prototype monocrystalline iron oxide nanoparticle, was first converted to an intermediate bearing a fluorochrome and amine groups, then reacted with either HIV-Tat peptide or protamine to yield a nanoparticle with membrane-translocating properties. We describe how to assess optimal cell labeling with tests of cell phenotype and function. Synthesis of magnetofluorescent nanoparticles and cell-labeling optimization can be realized in 48 h, whereas nanoparticle uptakes and retention studies may generally take up to 120 h. Labeled cells can be detected by magnetic resonance imaging, fluorescence reflectance imaging, fluorescence-mediated tomography, confocal microscopy and flow cytometry, and can be purified based on their fluorescent or magnetic properties. The present protocol focuses on T-cell labeling but can be used for labeling a variety of circulating cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accumulation of tumor-specific T cells in tumors visualized by serial MRI.

Similar content being viewed by others

References

  1. Lewin, M. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Kircher, M.F. et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 63, 6838–6846 (2003).

    CAS  PubMed  Google Scholar 

  3. Ntziachristos, V., Ripoll, J., Wang, L.V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2, 11–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Dudley, M.E. & Rosenberg, S.A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer 3, 666–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dudley, M.E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yee, C., Riddell, S.R. & Greenberg, P.D. In vivo tracking of tumor-specific T cells. Curr. Opin. Immunol. 13, 141–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. de Vries, I.J. et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol. 23, 1407–1413 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Frangioni, J.V. & Hajjar, R.J. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110, 3378–3383 (2004).

    Article  PubMed  Google Scholar 

  10. Vianello, F. et al. Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J. Immunol. 176, 2902–2914 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds, F., Weissleder, R. & Josephson, L. Protamine as an efficient membrane-translocating peptide. Bioconjug. Chem. 16, 1240–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664–668 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4, 1449–1452 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Weissleder, R., Kelly, K., Sun, E.Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418–1423 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Arbab, A.S. et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104, 1217–1223 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Montet-Abou, K., Montet, X., Weissleder, R. & Josephson, L. Transfection agent induced nanoparticle cell loading. Mol. Imaging 4, 165–171 (2005).

    Article  PubMed  Google Scholar 

  19. Chen, M.L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl. Acad. Sci. USA 102, 419–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Pittet, M.J. et al. Expansion and functional maturation of human tumor antigen-specific CD8+ T cells after vaccination with antigenic peptide. Clin. Cancer Res. 7, 796s–803s (2001).

    CAS  PubMed  Google Scholar 

  21. Pittet, M.J. et al. Ex vivo characterization of allo-MHC-restricted T cells specific for a single MHC-peptide complex. J. Immunol. 176, 2330–2336 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Pittet, M.J. et al. Ex vivo IFN-γ secretion by circulating CD8 T lymphocytes: implications of a novel approach for T cell monitoring in infectious and malignant diseases. J. Immunol. 166, 7634–7640 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kircher, M.F. et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 63, 6838–6846 (2003).

    CAS  PubMed  Google Scholar 

  24. Koehne, G. et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat. Biotechnol. 21, 405–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Shachaf, C.M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Thorne, S.H., Negrin, R.S. & Contag, C.H. Synergistic antitumor effects of immune cell-viral biotherapy. Science 311, 1780–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Shu, C.J. et al. Visualization of a primary anti-tumor immune response by positron emission tomography. Proc. Natl. Acad. Sci. USA 102, 17412–17417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murakami, T. et al. Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J. Exp. Med. 198, 1337–1347 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael J Pittet.

Ethics declarations

Competing interests

R.W. is a founder of VisEn Medical.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pittet, M., Swirski, F., Reynolds, F. et al. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 1, 73–79 (2006). https://doi.org/10.1038/nprot.2006.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.11

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing