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Valley filter and valley valve in graphene
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The potential of graphene for carbon electronics rests on the
possibilities offered by its unusual band structure to create
devices that have no analogue in silicon-based electronics".
Conduction and valence bands in graphene form conically
shaped valleys, touching at a point called the Dirac point. There
are two inequivalent Dirac points in the Brillouin zone, related
by time-reversal symmetry. Intervalley scattering is suppressed
in pure samples®. The independence and degeneracy of the
valley degree of freedom suggests that it might be used to
control an electronic device®, in much the same way as the
electron spin is used in spintronics’ or quantum computing®.
A key ingredient for ‘valleytronics’ would be a controllable way
of occupying a single valley in graphene, thereby producing a
valley polarization. Here we propose such a valley filter, based
on a ballistic point contact with zigzag edges. The polarity
can be inverted by local application of a gate voltage to the
point contact region. Two valley filters in series may function as
an electrostatically controlled valley valve, representing a zero-
magnetic-field counterpart to the familiar spin valve.

Earlier work® on one-dimensional (1D) conduction in
graphene ribbons (long and narrow ballistic strips) has shown that
they may support a propagating mode arbitrarily close to the Dirac
point, and that this mode lacks the valley degeneracy of modes that
propagate at higher energies. For armchair edges of the ribbon, this
lowest propagating mode is constructed from states in both valleys,
but for zigzag edges only a single valley contributes®"*. In accord
with time-reversal symmetry, the mode switches from one valley to
the other on changing the direction of propagation.

Here, we consider a 2D geometry consisting of a quantum point
contact (QPC) in a graphene sheet. A QPC is a short and narrow
constriction with a quantized conductance G =n x 2¢*/h (ref. 16).
(The factor of two accounts for the spin degeneracy.) A current, I,
is passed through the QPC by application of a voltage difference,
V, between the wide regions on opposite sides of the constriction
(see Fig. 1). The orientation of the graphene lattice is such that the
constriction has zigzag edges along the direction of current flow. We
demonstrate by numerical simulation that on the first conductance
plateau the QPC produces a strong polarization of the valleys in the
wide regions. Our finding signifies that the two valleys in graphene
can be addressed individually as independent internal degrees of
freedom of the conduction electrons. This is only possible in a 2D
geometry, because no well-separated valleys exist in 1D.

We show that the polarization of this valley filter can be inverted
by locally raising the Dirac point in the region of the constriction,
by means of a gate voltage, such that the Fermi level lies in the
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Figure 1 Schematic diagram of the valley filter. Middle panel: Honeycomb lattice
of carbon atoms in a strip containing a constriction with zigzag edges. Top panel:
Dispersion relation in the wide and narrow regions. An electron in the first valley
(modes n=0,1,2,...)is transmitted (filled circle), whereas an electron in the
second valley (modes n=—1, —2, .. .) is reflected (open circle). Bottom panel:
Variation of the electrostatic potential along the strip, for the two cases of an abrupt
and smooth potential barrier (solid and dashed lines). The polarity of the valley filter
switches when the potential height, U, in the constriction crosses the Fermi
energy, Er.
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Figure 2 Schematic diagram of the valley valve (top) and corresponding
potential profile (bottom). The current through the constriction is blocked if
L= E— U and g = E: — Uy have opposite signs.

conduction bands in the wide regions and in the valence band
inside the constriction. Two valley filters in series, one acting as a
polarizer and the other as an analyser, can block the current if they
have the opposite polarity (see Fig. 2), demonstrating that a QPC
can operate as a ‘valley valve—a purely electronic counterpart of
the magneto-electronic spin valve. This extends to a 2D geometry
the findings in a 1D geometry by Wakabayashi and Aoki'?. We
emphasize that their earlier work could not have demonstrated the
selective population of a single valley—simply because valleys do
not exist independently in 1D.

Our calculations start from the tight-binding model of
graphene, with hamiltonian

H=Y "zli)(jl+)_ Uili)il.
ij i

The hopping matrix element 7; = —7 if the orbitals |i) and |j) are
nearest neighbours on the honeycomb lattice, otherwise t;; =0. The
electrostatic potential energy U; = U (x;) varies only along the axis
of the constriction. It equals U, in the wide regions and rises to
U, inside the constriction. We smooth the stepwise increase of the
potential over a length L, according to the function

0 ifx<—L,/2,
O, (x) = 34 ;sin(mx/Ly) if |x| < L,/2,
1 ifx>L/2.

The potential barrier U(x) = Uy + (Uy — Uy)[OL,(x) — Oy,
(x—L)]is rectangular for L, =0 (solid line in Fig. 1, bottom panel),
whereas it has a sinus shape for L, = L (dashed line).

The dispersion relation of the honeycomb lattice in a strip
with zigzag edges is shown schematically in Fig. 1 (top panel) and
exactly in Fig. 3. The wide regions support 2N + 1 propagating
modes at the Fermi energy, Er, which form a basis for the
transmission matrix, t. Modes n =1,2,..., N lie in the first
valley (with longitudinal wavevector ka € (7, 27t) ), whereas modes
n=—1,-2,...,—N lie in the second valley (with ka € (0, 7)). The
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Figure 3 Dispersion relation of a graphene strip with zigzag edges. The spacing
of the low-lying modes approaches A= (1/ 243 nra/ Wfor W/a>> 1. The
zeroth and first modes have a larger spacing, approaching 3A /2 for W/a>>> 1. The
vertical lines mark the valley centres at k=2x/3a and 4t/ 3a.

zeroth mode, n =0, lies in a single valley fixed by the direction of
propagation. The conductance of the constriction is determined by
the Landauer formula

2¢ & al )
G="-> T  Tu=) Il

n=—N m=—N

The valley polarization of the transmitted current is quantified by

_ T+ (T, T.)
YT

where we consider the case (illustrated in Fig. 1) that the zeroth
mode lies in the first valley. The polarization P € [—1,1], with P=1
if the transmitted current lies fully in the first valley and P = —1 if
it lies fully in the second valley.

We have calculated the transmission matrix numerically by
adapting to the honeycomb lattice the method developed by Ando
for a square lattice”. The results are shown in Figs 4 and 5. We have
fixed the width of the wide regions at W, = 70+/3 a (in units of
the lattice spacing a). The electrochemical potential in the wide
regions is set at Ex — Uy, = lho, = T/3, corresponding to 2N +1=29
propagating modes. The narrow region has width W =20+/3 a. We
measure the electrochemical potential Ex — Uy = i, in the narrow
region in units of the mode spacing

p

’

1
= 5ﬁnm/wzm‘w/w

(with v = (1/2)+/3ta/h = 3 x 10°ms™" being the energy-
independent velocity in graphene). For our parameters A =7t /40,
as indicated in Fig. 3.

The operation of the valley filter is demonstrated in Fig. 4. The
top panel shows the conductance, whereas the bottom panel shows
the valley polarization—both as a function of the electrochemical
potential, (,, in the narrow region. For positive w,, the current
flows entirely within the conduction band, and we obtain plateaus
of quantized conductance at odd multiples of 2¢*/h (as predicted
by Peres et al.”?). Smoothing of the potential step improves the
flatness of the plateaus (compare the solid and dashed lines). The
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Figure 4 Conductance (top panel) and valley polarization (bottom panel) for the
valley filter of Fig. 1, as a function of the electrochemical potential in the
narrow region. The solid and dashed lines correspond to abrupt (L = 0) and
smooth (Ls = 8a) potential steps, respectively. The inset in the bottom panel shows
the degradation of the average valley polarization at 1., = 0.25 A when a randomly
chosen fraction, #, of sites at the edges of the constriction contain a vacancy.

plateaus in the conductance at G = (2n+ 1) x 2¢*/h correspond
to plateaus in the valley polarization at P =1/(2n+ 1). On the
lowest n = 0 plateau, and for 0 < p, < A, the polarization is more
than 95%.

For negative p,, the current makes a transition from the
conduction band in the wide regions to the valence band in
the narrow region. This interband transition has previously been
studied in an unbounded system''?, where it leads to selective
transmission at normal incidence. In the QPC studied here,
we find that the interband transition destroys the conductance
quantization—except on the first plateau, which remains quite flat
in the entire interval —3A/2 < p, < 3A/2. The resonances at
negative (i, are due to quasi-bound states in the valence band***.
The polarity of the valley filter is inverted for negative w,, with
some loss of quality (in particular for the smooth potential).

Because of the large Fermi wavelength at small 1, the quality
of the valley filter is quite robust against edge imperfections. To
demonstrate this, we have randomly introduced a fraction, 7, of
vacancies among the sites at the edges of the constriction. The
resulting degradation of the polarization (averaged over a few
hundred random configurations of vacancies) is shown in Fig. 4
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Figure 5 Conductance for the valley valve of Fig. 2 at fixed 1, as a function of
g. The solid and dashed lines correspond to abrupt (Ls = 0) and smooth (L; = 8a)
potential steps, respectively.

(inset of bottom panel). The polarization remains above 95% if a
few per cent of the atoms at the edge are removed, and removing as
many as 1/10 of the edge atoms still leaves a polarization of 85%.

The operation of the valley valve is demonstrated in Fig. 5.
The current is blocked for —3A/2 < uy < 0 with u, on the first
conductance plateau, so that the constriction contains two valley
filters of opposite polarity in series. The switching behaviour of
Fig.5 is similar to that obtained by Wakabayashi and Aoki in
a simulation of a zigzag graphene ribbon containing a potential
barrier'>. We anticipate that the experimental realization of this
device will make it possible to exploit the valley degree of freedom,
in addition to spin and charge degrees of freedom, as a carrier of
information in carbon electronics.
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