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P. Forn-Dı́az,1 J. J. Garćıa-Ripoll,2 B. Peropadre,3 J.-L. Orgiazzi,4

M. A. Yurtalan,4 R. Belyansky,4 C. M. Wilson,4, ∗ and A. Lupascu1, ∗

1Institute for Quantum Computing, Department of Physics and Astronomy,
and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, N2L 3G1, Canada

2Instituto de F́ısica Fundamental IFF-CSIC, Madrid 28006, Spain
3Department of Chemistry and Chemical Biology,

Harvard University, Cambridge, Massachusetts 02138, United States
4Institute for Quantum Computing and Department of Electrical and Computer Engineering,

University of Waterloo, Waterloo, N2L 3G1, Canada

The study of light-matter interaction has led to many fundamental discoveries as well as numerous
important technologies. Over the last decades, great strides have been made in increasing the
strength of this interaction at the single-photon level, leading to a continual exploration of new
physics and applications. Recently, a major achievement has been the demonstration of the so-called
strong coupling regime [1, 2], a key advancement enabling great progress in quantum information
science. Here, we demonstrate light-matter interaction over an order of magnitude stronger than
previously reported, reaching the nonperturbative regime of ultrastrong coupling (USC). We achieve
this using a superconducting artificial atom tunably coupled to the electromagnetic continuum of
a one-dimensional waveguide. For the largest coupling, the spontaneous emission rate of the atom
exceeds its transition frequency. In this USC regime, the description of atom and light as distinct
entities breaks down, and a new description in terms of hybrid states is required [4, 8]. Our results
open the door to a wealth of new physics and applications. Beyond light-matter interaction itself,
the tunability of our system makes it a promising tool to study a number of important physical
systems such as the well-known spin-boson [9] and Kondo models [12].

∗ These authors contributed equally to this work.
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Light propagating in a one-dimensional (1D) waveguide is described by a 1D electromagnetic field with a continuous
spectrum of frequencies. The strong coupling regime [7] between an atom and such an electromagnetic continuum
is defined as the regime in which the atom emits radiation predominantly into the waveguide with a rate ΓG that
significantly exceeds the decoherence rate of the atom as well as emission into any other channel. In this regime, the
atomic transition frequency ∆ far exceeds the emission rate ΓG � ∆. Achieving strong coupling to a continuum is
a recent achievement in quantum optics [7]. Strong atom-waveguide coupling has numerous applications such as the
development of quantum networks [9] for quantum communication [10] and quantum simulation [11]. This technology,
first demonstrated with superconducting qubits in open transmission lines [7, 10, 12, 13], has also been implemented
with both neutral atoms [14], and quantum dots [15] in photonic crystal waveguides. The distinctive signature of
strong coupling is a decrease below 50% of the amplitude of transmitted signals due to coherent atomic scattering of
photons.

A distinct regime of light-matter interaction is reached when ΓG becomes comparable to the atomic transition
frequency ΓG/∆ ∼ 0.1, the ultrastrong coupling (USC) regime. Most studies involving atom-field interactions are in
the regime ΓG � ∆ where the common rotating-wave approximation (RWA) applies. In the USC regime, the RWA
breaks down but perturbative treatments still allow an effective atom-field description when ΓG/∆ ∼ 0.1 [16, 17].
A novel, unexplored regime of light-matter interaction is the nonperturbative USC regime, where ΓG approaches or
exceeds the atomic transition frequency ΓG/∆ ∼ 1 and perturbation theory breaks down. This is a general definition
also applicable to the case of discrete modes in cavity-QED systems [18]. We note that the nonperturbative USC
regime has also been referred to in the literature as the deep strong coupling regime [19]. In the nonperturbative USC
regime, the atom-photon system is described by photons dressing the atom even in the ground state [4, 8, 18]. In this
regime, the Markovian approximation also breaks down because the broad qubit linewidth ΓG implies that the spectral
density of the environment seen by the atom is not independent of frequency. The presence of a continuum of modes
ultrastrongly coupled to an atom has the additional effect of renormalizing the atomic frequency from the bare value
∆0, which is a generalization of the well-known Lamb shift to arbitrary coupling strengths. These renormalization
effects are also central to the well-known spin-boson model [9], which has been used to describe, for example, open
quantum systems [20], quantum stochastic resonance [21] and phase transitions in Josephson junctions [22]. Reaching
the nonperturbative USC regime allows the exploration of the ultimate limits in light-matter interaction strength
and relativistic quantum information phenomena [23]. In addition, ultrastrong couplings may have technological
applications, such as single-photon nonlinearities [24] and broadband single-photon sources [4].

Superconducting qubits are artificial atoms with transitions in the microwave range of frequencies. Recently, flux-
type superconducting qubits have been put forward as candidates to reach the nonperturbative USC regime [4, 26],
having demonstrated large galvanic couplings to resonators [17] and a large anharmonicity that allows them to remain
an effective two-level system when ΓG ∼ ∆. This is in contrast to other more weakly anharmonic qubits whose
transitions would overlap for large enough ΓG.
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FIG. 1. Measurement setup and devices. (a) Schematic of the circuit layout, with a micrograph of a section of a chip containing
a transmission line and a flux qubit. (b) Circuit schematic of a flux qubit coupled to a transmission line with tunable (fixed)
coupling shown at the top (bottom). In both cases, the coupling is proportional to the matrix element of the phase operator
ϕβ across the coupling junction β. The scanning electron micrographs show the corresponding circuits. The white scale bars
are 4 µm.

Here, we demonstrate nonperturbative ultrastrong coupling of a superconducting flux qubit [3] coupled to an open
1D transmission line via a shared Josephson junction. As predicted [4, 26], we observe that ΓG scales with the inverse
of the coupling junction size. For devices with a small-enough coupling junction we measure ΓG ∼ ∆, indicating that
we reach the nonperturbative USC regime. Our flux qubit has four Josephson junctions. Two reference junctions
are designed with the same area, while the areas of the other two are scaled by the factors α ∼ 0.6 and β > 1 with
respect to the area of the reference junctions [27]. The flux qubit is galvanically attached to the center line of a 1D
coplanar waveguide transmission line (Fig. 1(a)). In order to achieve ultrastrong couplings, we place the β-junction
in parallel to the other three (Fig. 1(b)). The coupling to the line is then mainly determined [4, 26] by the matrix
element between ground |0〉 and excited |1〉 qubit states of the superconducting phase operator across the β-junction
〈0|ϕ̂β |1〉 ≡ ϕβ , which is the dominant contribution to the coupling for β < 4. Further, we make the coupling tuneable
by turning the β-junction into a superconducting quantum interference device (SQUID) threaded by a flux Φβ as
shown in Fig. 1(b) (Methods).
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The experiments are performed by applying a probe field with a variable frequency and recording the transmitted
field amplitude and phase on a vector network analyzer. For emission rates Γ1/∆� 1, where Γ1 is the total emission
rate, and in the presence of thermal excitations, the transmitted coherent scattering amplitude at low driving power
is given by [6, 7]:

T = 1 +R ≈ 1 + (δω/Γ2)2 + r0(iδω/Γ2 − 1)

1 + (δω/Γ2)2
. (1)

Here Γ2 ≡ Γϕ + (Γ1/2)(1 + 2nth) is the total decoherence rate, Γϕ is the pure dephasing rate, δω = ω − ∆ is the
detuning of the probe field, and nth is the thermal photon occupation number at the qubit frequency (Supplementary
Information). The maximum reflection amplitude is r0 = Γ1/[2Γ2(1 + 2nth)]. As in other experiments on super-
conducting quantum circuits [7, 10], relaxation into channels other than the waveguide is negligible. Therefore, we
assume Γ1 = ΓG. We note that equation (1) applies in the RWA. However, it has recently been shown [8] that the
scattering line shapes are approximately Lorentzian in the USC regime up to Γ1/∆ ∼ 1 if we consider ∆ and Γ1 to be
renormalized parameters. This can be shown using a polaron transformation, allowing us to interpret the scattering
center as an atom dressed by a cloud of photons.

We first show measurements on a device with a fixed coupling junction with β ' 3.5 (Fig. 1(b)). The transmission
spectrum as a function of applied magnetic field (Fig. 2(a)) shows a maximum extinction at the symmetry point of
95%, indicating strong coupling. By fitting equation 1 (dashed line), we infer Γ1/2π = 88 ± 11 MHz (see Methods),
∆/2π = 3.996± 0.001 GHz, giving Γ1/∆ = 0.02 which is not in the USC regime. Flux qubit spectra in transmission
lines similar to this one have previously been reported [7, 29].
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FIG. 2. Spectroscopy of devices with fixed coupling. Top plots show transmission versus frequency and magnetic flux, referenced
to Φ0/2. Bottom plots show transmission corresponding to the magnetic flux at the minimum qubit splitting. Dashed lines are
fits to equation (1). Bounds on Γ1 are from considerations of thermal effects (Methods). (a) Transmission spectrum of qubit
with β ' 3.5 and gap ∆/2π = 3.996± 0.001 GHz. The 95% extinction on-resonance indicates strong coupling. (b) Spectrum of
qubit with β ' 1.8. The fit yields Γ1/2π ' 9.24± 0.52 GHz, exceeding the qubit gap of ∆/2π = 7.68± 0.08 GHz. This implies
Γ1/∆ = 1.20 ± 0.07, which indicates ultrastrong coupling. The extinction of the transmitted power at the symmetry point is
97%.

In order to enhance the coupling strength, we designed a second device where the size of the β-junction was decreased
to β ' 1.8. The resulting qubit spectrum in Fig. 2(b) shows striking differences compared to the previous device with
β ' 3.5. The qubit linewidth at the symmetry point is very large, comparable to the total measurement bandwidth of
3-11 GHz. The deviations from a Lorentzian line shape are due to bandwidth limitations of our setup, still allowing
us to infer a full width at half maximum of 2Γ2/2π ' 10.90± 0.44 GHz (see Methods). The extracted qubit emission
rate Γ1/2π ' 9.24± 0.52 GHz exceeds the qubit splitting ∆/2π = 7.68± 0.08 GHz, giving Γ1/∆ = 1.20± 0.07, a clear
indication that this device reaches the nonperturbative USC regime.

Having observed two devices with Γ1 � ∆ and Γ1 > ∆, we now explore the intermediate region using a device
with tunable coupling (Fig. 1(b)) designed with a tunable range of β ∼ 1.6 − 3.6. In Figs. 3(a)-(c), spectroscopy
of the tunable coupling device is shown at three different values of Φβ . Using scanning-electron microscope (SEM)
images of the measured device, we identify Figs. 3(a)-(c) as effectively having, respectively, β(a) ' 3.6, β(b) ' 2.0,
β(c) ' 1.6. Fig. 3(a) corresponds to the highest effective β-junction size, therefore the lowest coupling strength. A
flux qubit spectrum can be identified with ∆/2π = 5.20 ± 0.02 GHz and 2Γ2/2π ' 2.40 ± 0.07 GHz. The maximum
extinction at the symmetry point is over 95%. The quality of the signal below 4 GHz degrades due to the measurement
taking place outside the optimal bandwidth of our amplifier and circulators (4-8 GHz, Supplementary Information).
In Fig. 3(b), the qubit gap decreases to ∆/2π ' 2.90 ± 0.05 GHz as expected for a smaller β-junction. The width
2Γ2/2π = 5.90±0.22 GHz is clearly enhanced, with the extinction decreasing to 30%. In Fig. 3(c), the qubit spectrum
is barely discernible. The extinction is only 10%, with a response that appears featureless in our frequency range.
Figs. 3(d),(e) show the extracted values of r0 and Γ2 using equation 1. The value of 2Γ2/2π ' 13 ± 3 GHz from
Fig. 3(c) is an inferred bound due to the difficulty in fitting the transmission at this value of flux.

In order to understand the spectrum of the tunable coupling device and extract the corresponding emission rates
Γ1, we need to take into account finite temperature effects. We can set an upper bound on nth, which is nmax ≡
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FIG. 3. Tunable ultrastrong coupling device. (a-c) Colour plots of transmission versus frequency and magnetic flux (top) and
line plots at the magnetic flux corresponding to the minimum qubit splitting (bottom). Dashed lines are fits to equation (1). As
a function of the applied magnetic field we observe a transition from strong (a) to nonperturbative ultrastrong coupling (b), (c).
(a) For Φβ/Φ0 ' −1 the coupling is lowest (β largest) and the extinction is 95% of the transmitted power. (b) At Φβ/Φ0 ' −0.71
the qubit reaches Γ1 ' ∆. (c) Near Φβ/Φ0 ' −0.5 the system only reflects 10% of the incoming power and shows little signature
of frequency dependence. The measured normalized couplings Γ1/∆ are (a) 0.35, (b) 0.90 and (c) > 1.5, respectively. The
large oscillations observed below 4 GHz are caused by reflections outside of our optimal measurement bandwidth 4-8 GHz.
Fitting equation (1) at the symmetry point of each qubit resonance allows extraction of the modulation of r0 (d) and Γ2 (e).
Error bars represent the uncertainty in the fitted values of r0 and Γ2. From these values, we can compute bounds for Γ1 and
the maximum thermal photon number nmax (see Methods). (f) Extracted nmax showing thermal excitation at lower β (lower
frequency). Size of markers includes error bars. The decreasing value of ∆ below ∼ 5 GHz causes the photon occupation to
increase exponentially, closely following a Bose-Einstein (BE) distribution at Teff = 90 mK (dash-dotted line) for β > 2. The
particular resonances shown in panels (a)-(c) are indicated.

(1/2)(1/
√
r0− 1) (Methods). Fig. 3(f) shows that the values of nmax for β > 2 are consistent with a unique maximum

effective temperature of Teff = 90 mK, comparable to other superconducting qubit experiments. Using 0 < nth < nmax,
we then put bounds on Γ1: 2Γ2r0 < Γ1 < 2Γ2

√
r0. Using these bounds, we plot Γ1/∆ in Fig. 4(a). The plot clearly

shows that we can tune the device from the regime of strong coupling all the way into the nonperturbative USC
regime. The curves in Fig. 4(a) correspond to the theoretical value of the normalized coupling strength (Supplementary
Information)

Γ1/∆ '
1

2π

RQ
Z0
|ϕβ |2, (2)

with RQ = h/(2e)2 = 6.5 kΩ the resistance quantum and Z0 the characteristic impedance of the line. The matrix
element values of the phase operator across the coupling junction β, |ϕβ |2, are calculated using the methods of reference
3. The observed values of Γ1/∆ agree very well with the calculated values based on our circuit [4] for an impedance
close to the nominal 50 Ω. Above Γ1/∆ ' π/2, equation (2) becomes a lower bound (Supplementary Information).
This is consistent with data in the range β < 2 lying above equation (2). Including renormalization effects [9] in
equation (2) might further improve the agreement with the measurements for β < 2.

Our system allows us to explore the spin-boson (SB) model in an ohmic bath. According to the SB model, the high
frequency modes of the transmission line renormalize the bare qubit splitting ∆0 to [8, 9]

∆ = ∆0(p∆0/ωC)αSB/(1−αSB). (3)

αSB is the SB normalized coupling strength that is related to the spectral density of the environment J(ω). For an
ohmic system such as our transmission line, αSB = J(ω)/πω. ωC � ∆0 is the cutoff frequency of the environment
and p is a constant of order 1. Up to αSB ∼ 0.5, we identify αSB = Γ1/π∆. Above αSB ' 0.5 (or Γ1/∆ ' π/2) this
relation becomes a lower bound for αSB (Supplementary Information). In Fig. 4(b) we plot the experimental qubit
splittings ∆ (circles). Using qubit junction dimensions extracted from SEM images of the device, we diagonalize the
qubit Hamiltonian at each flux Φβ (triangles) to give the bare qubit gaps ∆0. We then renormalize the calculated ∆0

using equation 3 and a value of p = exp(1+γ) ' 4.8, which is derived using an exponential cutoff model [8, 9]. γ is the
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FIG. 4. Normalized coupling rates and frequency renormalization. (a) Experimental normalized coupling rate Γ1/∆ (dots) as a
function of the coupling junction size β for the device with tunable coupling. Error bars correspond to systematic bounds on Γ1

(see Methods). The dashed curve represents the calculated parameter Γ1/∆ from equation (2). There is very good agreement
with the data for an impedance close to the nominal 50 Ω. The colored regions indicate the spin-boson model regimes where
the qubit dynamics are underdamped, overdamped and localized. The inset shows an enlargement of the high-β region. For
β < 2 the curve represents a lower bound. (b) Observed qubit frequency ∆ at the symmetry point (circles) as function of Φβ ,
along with calculated bare qubit gaps ∆0 (triangles). The curve is the theoretical prediction for the renormalized qubit gaps
calculated using equation (3) assuming a cutoff frequency of ωC/2π = 50 GHz. Near integers of Φβ/Φ0, the coupling to the
line is minimum and the observed ∆ follows the shape of the calculated ∆0, with an offset. Near Φβ/Φ0 ∼ −0.5, the difference
between ∆ and ∆0 increases substantially. This is the region of nonperturbative ultrastrong coupling and the suppression of ∆
is consistent with the renormalization effects predicted by the spin-boson model. The spectra in this region are difficult to fit
with a Lorentzian and upper bounds to the frequency indicated by arrows are drawn instead.

Euler constant. We find the best fit to the measured ∆ using a cutoff of ωC/2π = 50 GHz, which is consistent with
characteristic system frequencies such as the plasma frequency of the qubit junctions and the superconducting gap.
The agreement between the observed qubit splittings ∆ and our estimates of the renormalized gaps is clear [4, 8, 9].

As a prelude to future work, we can place our results in the context of the SB model. The SB model defines three
dynamical regimes for the qubit: underdamped (αSB < 0.5), overdamped (1 > αSB > 0.5) and localized (αSB > 1).
The connection between Γ1/∆ and αSB allows us to draw the boundaries between these regimes in Fig. 4(a). We see
that our tunable device enters well into the overdamped regime, and very possibly into the localized regime for β < 2.
More detailed measurements of the dynamics of the device in these regimes could further confirm the predictions of the
SB model. Suggestively, the strong reduction of the qubit response seen in Fig. 3(c) (leftmost data points in Fig. 4(a))
with a flat response as a function of frequency is consistent with simulations of classical double-well dynamics in the
overdamped regime (in preparation, P. F.-D.).

We have presented measurements of superconducting flux qubits in 1D open transmission lines in regimes of inter-
action starting at strong coupling and ranging deeply into the ultrastrong coupling regime. In particular, we observed
qubits with emission rates exceeding their own frequency, a clear indication of nonperturbative ultrastrong coupling.
These results are very relevant for the study of open systems in the USC regime, opening the door to the development
of a new generation of quantum electronics with ultrahigh bandwidth for quantum and nonlinear optics applications.
The tunability of our system also makes it well-suited to the simulation of other quantum systems. In particular, we
showed that the device can span the various transition regions of the SB model. With further development of our
quantum circuit, the structure of the photon dressing cloud could also be directly detected, allowing the study of the
physics of the Kondo model [12] in a well-controlled setting. The ultrastrong coupling regime has other interesting
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intrinsic properties on its own, such as the entangled nature of the ground state.
Note added in proof: After acceptance of our paper, a related manuscript was published [30] showing similar results

to this work using a resonator instead of a transmission line.

METHODS

Device details and fabrication. We made the device with tuneable coupling by replacing the β-junction with a
SQUID threaded by a flux Φβ . The tuneable coupling device then consists of two loops, the main loop that changes
primarily the qubit magnetic energy through the flux Φε and the β-loop that changes the effective coupling to the
transmission line through Φβ . Changing β also modifies the minimum qubit splitting ∆. In order to minimize this
effect, we make the SQUID junctions asymmetric, which lowers the sensitivity of ∆ to Φβ . Similar tuneable coupling
architectures were already suggested in ref. 31. In the experiment, we sweep the global magnetic field, therefore
simultaneously changing Φε and Φβ . The qubit spectrum shows minima near Φε ≈ Φ0(1/2 + n) with Φ0 = h/2e the
quantum of flux, n being an integer (Supplementary Information). Here, different n will correspond to different Φβ ,
leading to different coupling strengths. The loop areas Aε/Aβ are designed to have a large, incommensurate ratio,
allowing the exploration of many different values of β.

The fabrication methods used are based on those of ref. 27. The fabrication of devices starts by patterning the trans-
mission line using optical lithography followed by an evaporation of 200 nm of aluminum. A gap in the transmission
line is left to place the qubit in a second lithography stage. We pattern the qubit using an electron beam writer. Prior
to the second aluminum evaporation an Ar milling step is applied to remove the native oxide on the first aluminum
layer, guaranteeing optimal conduction between the two aluminum layers. The qubit is evaporated using double-angle
shadow mask evaporation resulting in a total thickness of 105 nm. After the first shadow evaporation step, we oxidize
the film with dynamical flow at ∼ 0.01 mbar for 7 minutes, yielding critical current densities of ∼ 12 µA/µm2. The
chip is then diced and the transmission line is wire-bonded to a printed circuit board connecting to the rest of the
circuitry in our cryostat.

The transmission line consists of a 6.5 mm long on-chip coplanar waveguide with a center line and gaps 8 µm and
4 µm wide, respectively, resulting in a 50 Ω characteristic impedance. Numerical simulations are run to verify the
impedance of the circuit. We use a squared webbed ground to reduce superconducting vortex motion on the ground
plane.
Bounds on qubit emission rate. The dependence of r0 and Γ2 on nth shown below equation (1) does not allow
the independent extraction of all parameters, Γ1,Γϕ, nth at each value of β. However, we can set bounds on nth. The
lower bound case assumes no thermal excitations, therefore nth = 0. If we instead set Γϕ = Γ2(1− r0(1 + 2nth)2) ≥ 0,
we identify an upper bound on the photon occupation number nmax ≡ (1/2)(1/

√
r0 − 1). In Fig. 3(f), the values of

nmax were extracted assuming Γϕ = 0. If we were to assume Γϕ/2π = 17 MHz as the nonthermal dephasing rate,
extracted from the narrower linewidth of the device in Fig. 2(a) assuming nth = 0, the resulting nth would not differ
significantly from nmax. Now, bounds on Γ1 = 2Γ2r0(1 + 2nth) can be set as Γ1(nth = 0) and Γ1(nth = nmax) giving
2Γ2r0 < Γ1 < 2Γ2

√
r0. The lower bound, nth = 0, is close to the calculated value of nth at the cryostat temperature

of 10 mK for all qubit frequencies.
Spectroscopic analysis. In all data shown, we use equation (1) to simultaneously fit the real and imaginary parts
of the transmission. Section S3 of the supplementary shows the full set of fitted resonances used in figures 3 and 4
of the main text. Note that the baseline is fixed to a normalized value of 1 and is not adjusted. The baseline value
is itself determined by measuring the transmitted background when the qubit is flux-tuned away from the frequency
band of interest.
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[31] Peropadre, B., Forn-Dı́az, P., Solano, E., Garćıa-Ripoll, J. J. Switchable ultrastrong coupling. Phys. Rev. Lett. 105, 023601

(2010).



8

SUPPLEMENTARY MATERIAL

S0: MEASUREMENT SETUP

Experiments on the device in Fig. 2(a) of the main text and the tunable device were performed in a dilution
refrigerator with a base temperature of 9 mK where the chip is thermally anchored to. Our wiring is configured to
measure both in reflection as well as in transmission using different input ports, although in this work we only show the
transmission measurements. The optimal measurement bandwidth of the system is 4-8 GHz. The on-chip transmission
line is followed by two circulators behind a cryogenic amplifier (see Fig. S1 for the full circuit diagram) anchored at
3.2 K with noise temperature of ∼ 5 K. We further amplify the signals at room temperature and digitize them using
either a vector network analyzer or a spectrum analyzer. The device in Fig. 2(b) of the main text was characterized
in a different dilution refrigerator with a base temperature of 15 mK, and having a similar wiring configuration as the
one shown in Fig. S1 except for a larger nominal measurement bandwidth of 3-11 GHz.

YokogawaAgilent VNA
T = 290 K

T = 50 K

T = 3 K

T = 1 K

T = 50 mK

T = 9 mK

10dB

20dB

3dB

20dB
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1dB

RC filter 17Hz 

RADC-4-8-
Cryo-0.02-4K

Low-pass
filter

Attenuator

Amplifier

Circulator

FIG. S1. Schematic of the full circuit for transmission measurements.

S1: QUBIT HAMILTONIAN AND TUNABLE COUPLING OPERATOR

The circuit layout of a flux qubit galvanically tunably coupled to a transmission line with a SQUID-loop shared
between the two can be seen in Fig. S2.
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ϕ3ϕ4ϕ5
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r1

r2

r3

r4r5

ϕ2

ϕ4

Φβ

Φε

FIG. S2. (a) Schematic of the circuit layout of a flux qubit sharing a SQUID-junction with a transmission line. The coefficients
r1, r2, r3, r4, r5 represent the size of the junctions. For the device used in the experiment, r2 = 0.62, r4 = 2.6, r1 = r3 = r5 = 1.
(b) Qubit potential with first four energy levels for Φβ = 0, Φε = Φ0/2 together with the wave functions of the lowest two levels
for the ground (symmetric) and first excited state (antisymmetric). The parameters used are similar to the device with tunable
coupling of the main text, EJ/EC ' 70, EJ/h ' 350 GHz. Notice that the levels lie above the barrier as is usual for flux qubits
with level splittings in the GHz range [1].
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The Lagrangian of the qubit can be written down by considering the fluxoid quantization condition on the separate
loops:

ϕ1 + ϕ2 + ϕ3 + ϕ4 + 2πfε = 0, (S1)

ϕ4 + ϕ5 + 2πfβ = 0, (S2)

where fε = Φε/Φ0, fβ = Φβ/Φ0 are the magnetic frustration in each loop. Using ϕ1, ϕ2, ϕ4 as the independent degrees
of freedom, the Lagrangian of the qubit reads [2]:

L(ϕ1, ϕ2, ϕ4, ϕ̇1, ϕ̇2, ϕ̇4) =
ϕ2

0C

2

(
r1ϕ̇1

2 + r2ϕ̇2
2 + (r4 + r5)ϕ̇4

2 + r3(ϕ̇1 + ϕ̇2 + ϕ̇4)2
)

+

EJ
(
r1 cosϕ1 + r2 cosϕ2 + r4 cosϕ4 + r3 cos(−2πfε − ϕ1 − ϕ2 − ϕ4) + r5 cos(−2πfβ − ϕ4)

)
. (S3)

Here we defined the reduced flux quantum ϕ0 = Φ0/2π, C is the capacitance of junction with size r = 1, EJ = ICϕ0.
The canonical momenta qi = ∂L/∂ϕ̇i are related to the derivative of the conjugate phase operator:ϕ̇1

ϕ̇2

ϕ̇4

 =
1

Cϕ2
0

1

det(K)

r3(r4 + r5) + r2(r3 + r4 + r5) −r3(r4 + r5) −r3r2

−r3(r4 + r5) r3(r4 + r5) + r1(r3 + r4 + r5) −r3r1

−r3r2 −r3r1 r2r3 + r1(r2 + r3)

q1

q2

q4

 ,

(S4)
where det(K) = r2r3(r4 + r5) + r1(r3(r4 + r5) + r2(r3 + r4 + r5)) is the dimensionless determinant of the capacitance
matrix. We can now write down the Hamiltonian following a Legendre transformation H =

∑
i qiϕ̇i − L:

H =
4EC

r2r3(r4 + r5) + r1(r3(r4 + r5) + r2(r3 + r4 + r5))

(
n2

1(r3(r4 + r5) + r2(r3 + r4 + r5))+

n2
2(r3(r4 + r5) + r1(r3 + r4 + r5)) + n2

4(r2r3 + r1(r2 + r3))− 2n1n2r3(r4 + r5)− 2n4r3(r1n2 + r2n1)
)
−

EJ
(
r1 cosϕ1 + r2 cosϕ2 + r4 cosϕ4 + r3 cos(−2πfε − ϕ1 − ϕ2 − ϕ4) + r5 cos(−2πfβ − ϕ4)

)
. (S5)

Here we defined the quantized charge operator ni = ~qi as well as the charging energy EC = e2/2C. If we set
fβ = 0 the last term in the Josephson energy becomes r5 cosϕ4, which combined with the r4 term becomes an effective
junction of size (r4 + r5). For fβ = 0.5, the last term becomes −r5 cosϕ4, which now leads to an effective junction of
size (r4 − r5). Therefore we can tune the effective size of the coupling junction without affecting much of the rest of
the qubit Hamiltonian. The different junction size will unavoidably lead to modifications of the qubit splitting.

In order to diagonalize the Hamiltonian it is convenient to find its representation in the charge basis {|n〉} where
the Josephson terms have a simple expression, since [2]

cosϕ|n〉 =
eiϕ + e−iϕ

2
|n〉 =

|n− 1〉+ |n+ 1〉
2

. (S6)

The Josephson terms are therefore not represented by a closed Hilbert subspace in the charge basis. Therefore we
need to restrict the number of charges between −nmax and nmax for each degree of freedom. Usually for nmax = 10
the error in the eigenenergies is less than 1%. Fig S2(b) shows the calculated qubit energies and wavefunctions for
fβ = 0 and fε = 0.5 using nmax = 10.

S1.1: Energy levels and Crosstalk

For a given set of fluxes (fε, fβ) we can find the eigenenergies and eigenstates of the qubit. For all calculations
shown in this section we take the values close to the experiment with the tunable coupling device r1 = r3 = 1.0, r2 =
0.6, r4 = 1.0, r5 = 2.6, EJ/EC = 70, EJ/h = 300 GHz, nmax = 10. The areas of the two qubit loops are seen to be
Aε/Aβ ' 8.3, which agree with the data as seen in the calculations of Fig. 4(b) of the main text. In order to reproduce
the experimental spectra we sweep the flux in the ε-loop and assume the flux in the beta loop to be proportional to
it, Φβ = Φε/8.3.

The resulting spectra in Fig. S3 clearly show a lack of periodicity, as would be expected for a qubit with no SQUID-
loop. The qubit symmetry points do not agree with Φε = Φ0(1/2 + n), n being an integer. The difference is due to
the interference between the two qubit loops. The potential energy terms related to the applied fluxes are

r4 cos(−2πfε − ϕ1 − ϕ2 − ϕ3) + r5 cos(−2π(fβ + fε)− ϕ1 − ϕ2 − ϕ3). (S7)

In analogy with the usual flux qubit potential [3], we can rewrite these terms as an effective new Josephson term Ũ

with effective critical current Ĩ and effective flux f̃ as Ũ/EJ = −Ĩ cos(−ϕ1 − ϕ2 − ϕ4 + 2πf̃). Expanding the cosine

terms, we can relate f̃ and Ĩ with the rest of parameters:

− Ũ/EJ = Ĩ(cosϕΣ cos 2πf̃ − sinϕΣ sin 2πf̃), (S8)

= cosϕΣ(r4 cos 2πfε + r5 cos(2π(fε + fβ))− sinϕΣ(r4 sin 2πfε + r5 sin 2π(fε + fβ)), (S9)
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FIG. S3. (a) Calculated three lowest energy levels of the Hamiltonian in Eq (S5) as function of Φε taking into account that
Φβ = Φε/8.3. The energies are in units of EJ . (b) Energy differences with respect to the ground state energy. Notice that qubit
symmetry points are not falling on top of Φ/Φ0 = 0.5 due to the interference between the two qubit loops.

where ϕΣ = ϕ1 + ϕ2 + ϕ3. In particular, at the symmetry point f̃ = 1/2 which cancels the second term in Eq. (S8).
This implies that the term multiplying sinϕΣ has to be zero, leading to a transcendental equation to obtain the
location of all symmetry points:

− r4

r5
=

sin 2πfε
sin 2π(fε + fβ)

. (S10)

In addition to equation (10) we also impose the condition cos(2πf̃) = −1, that is

− 1 = r4 cos 2πfε + r5 cos 2π(fε + fβ). (S11)

We calculate the difference between consecutive qubit symmetry points in Fig. S4(a) over a period of Φβ . The cosine-
like modulation clearly shows the interference between the two loops. The experimentally measured difference in
periodicity of the qubit symmetry points is plotted in Fig. S4(b). A modulation of the periodicity is also clear. The
relative change of periodicity of ∼ 10% agrees with the prediction of Eqs. (S10), (S11). Fig. S4(b) is scaled to the
value at Φβ/Φ0 = 0. Fig. S4(a) is scaled such that “1” in the vertical axis would correspond to Φε/Φ0 = 0.5.
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FIG. S4. (a) Calculated difference in consecutive qubit symmetry points as function of flux in ε-loop, using Eqs. (S10), (S11).
(b) Experimentally measured distance between qubit periods. The relative change of period ∼ 10% for both plots (a) and (b)
agrees quite well. The difference in (b) at Φβ/Φ0 = 0 and Φβ/Φ0 ' −1 could be attributed to small flux drifts, given that the
sweep is over many periods of flux for the qubit ε-loop.

The qubit Lagrangian shown here does not include geometric capacitance between islands and to ground. We have
inspected the effect of those terms and found less than 10% variation in the qubit frequency.

S1.2: Coupling operator

As shown in Ref. [4], the coupling strength of a flux qubit sharing a junction with a resonator or a transmission line
is given by the modulus of the matrix element of the phase operator across the coupling junction |〈1|ϕ̂i|0〉|. In the
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circuit of Fig. S2 this corresponds to the phase across ϕ̂4. The coupling operator can be expressed in the qubit basis
states using that the representation in the charge basis of the phase operator is

〈n|ϕ̂|m〉 =
1

2π

∫ π

−π
ϕ̂e−i(m−n)ϕ̂dϕ̂ =

{
0 if m = n,

−i (−1)(m−n)

m−n if m 6= n.
(S12)

The limits of integration fall within a unit cell of the qubit potential. The qubit eigenstates can be represented in the

basis of charge states |g〉 =

nmax∑
n1,n2,n4=−nmax

cn1,n2,n4
|n1, n2, n4〉. Therefore the matrix elements of the phase operator

in the qubit basis {|g〉, |e〉} for arbitrary states |M〉, |N〉 look like:

〈M |ϕ̂4|N〉 =

nmax∑
n1,n2,n4

nmax∑
n′1,n

′
2,n
′
4

c∗n1,n2,n4
cn′1,n′2,n′4

[
−i (−1)(n′4−n4)

n′4 − n4
δn1,n′1

δn2,n′2

]
. (S13)

We use the representation of the phase operator in the qubit basis to obtain the different components of the qubit
operator. We want only transverse coupling σx with matrix element 〈0|ϕ̂4|1〉 ≡ ϕ4, and not σz terms that would
otherwise induce dephasing in the qubit from the line. Using equation (S13) we can compute the form of the operator,
shown in Fig. S5
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FIG. S5. (a) Calculated phase operator in the qubit basis at the symmetry point for different periods of Φε. The operator has
only σx component (orange) and no σz component (blue). The qubit splitting ∆ is also plotted, its value changing approximately
a factor of 2 for the parameters of the device. (b) Calculated qubit Hamiltonian terms and coupling operator terms as function
of Φε for fixed Φβ = 0. Away from the symmetry point the qubit Hamiltonian rotates from σz and starts to acquire a σx,y
component. The coupling operator follows closely the qubit Hamiltonian rotation. Therefore near the symmetry point the
coupling operator rotates due to the qubit basis rotation as function of magnetic flux Φε and not due to other terms in the
Hamiltonian.

Clearly, the coupling operator only has σx component at the symmetry point while its magnitude increases by
approximately a factor of 2.6, as expected due to the modulation of the size of the β-junction. The qubit gap is also
modulated as expected due to the effective change in size of β. The change is approximately of a factor of 2. Therefore
the normalized coupling Γ/∆ ∼ |ϕβ |2 (see section S7) increases by a factor of ∼ 7 from Φβ = 0 to Φβ = Φ0/2. On
Fig. S5(b) we also calculate the terms of the qubit Hamiltonian and coupling operator near Φε = Φ0 for fixed Φβ = 0.
Clearly the coupling rotates from σx to σz as the qubit Hamiltonian rotates from σz to σx. Therefore the rotation of
the coupling operator is exclusively due to the qubit Hamiltonian rotation and not from other terms. Similar rotations
of the coupling operator between qubits and transmission lines or resonators were already identified in [5].

S2: SCATTERING RATES AT FINITE TEMPERATURE

Following from [6], the general definition of the master equation is

ρ̇(t) = − i
~

[H, ρ(t)] +
1

2

∑
n

[2Cnρ(t)C†n − ρ(t)C†nCn − C†nCnρ(t)], (S14)

where the Cn =
√
γAn are the jump operators, with γ the rate for each process with collapse operator An. Here H is

the free Hamiltonian and contains the qubit part truncated to two levels, Hqb/~ = ∆σx/2 − εσz/2 and the external
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driving Hd/~ = Ω sin(ωdt)σz. For a qubit, the decay operator is σ− while the excitation operator is σ+. In terms of
components, the diagonal decay terms of the master equation read

ρ̇ii =
∑
j 6=i

(Γjiρjj − Γijρii). (S15)

Here Γeg = Γ1(1 + nth) is the relaxation rate and Γge = nthΓ1 the excitation rate. nth is the expectation value of
photon number for a thermal state in equilibrium with a bath at temperature T :

nth =
1

e~ω/kBT − 1
.

The off-diagonal decay terms take the form (for i 6= j)

ρ̇ij = −γijρij , (S16)

where the decoherence rates are γeg = Γϕ + 1
2 (Γeg + Γge) = Γϕ + (Γ1/2)(1 + 2nth) ≡ Γ2, with Γϕ the pure dephasing

rate.
Explicitly, the decay equations for the four components of the density matrix now look:

ρ̇ee = Γgeρgg − Γegρee = nthΓ1(ρgg − ρee)− Γ1ρee, (S17)

ρ̇gg = Γegρee − Γgeρgg = nthΓ1(ρee − ρgg) + Γ1ρee, (S18)

ρ̇eg = −γegρeg = −[Γϕ + Γ1(1 + 2nth)/2]ρeg = −Γ2ρeg, (S19)

ρ̇ge = −γgeρge = −[Γϕ + Γ1(1 + 2nth)/2]ρge = −Γ2ρge. (S20)

The free evolution terms given by the commutator [H, ρ(t)] can be easily computed in the rotating frame of the
drive frequency ωd, under the rotating-wave approximation, where

H/~ = −δωσz/2 + Ωσx/2. (S21)

The detuning is defined as δω = ωd − ωqb, ωqb =
√

∆2 + ε2 is the qubit energy splitting in units of angular frequency.
ε is the magnetic field energy controlled by Φε (Fig. S2(a)). The full equation of motion for all components of the
density matrix are:

ρ̇ee = − iΩ
2

(ρge − ρeg) + nthΓ1(ρgg − ρee)− Γ1ρee, (S22)

ρ̇gg = +
iΩ

2
(ρge − ρeg) + nthΓ1(ρee − ρgg) + Γ1ρee = −ρ̇ee, (S23)

ρ̇eg = − iΩ
2

(ρgg − ρee)− iδωρeg − Γ2ρeg, (S24)

ρ̇ge = +
iΩ

2
(ρgg − ρee) + iδωρge − Γ2ρge. (S25)

Now we want to find the steady-state populations of the qubit, ρ̇ = 0. The off-resonant terms are related by

ρeg(iδω + Γ2) = ρge(iδω − Γ2). (S26)

Adding Eqs. (S22), (S25),

Γ1ρee = −ρge
(
iΩ

2

)(
2Γ2

Γ2 + iδω
+ (Γ2 − iδω)Γ1nth

(
2

Ω

)2
)
. (S27)

Using that Tr(ρ) = 1 = ρee + ρgg, Eq. S23 can be rewritten as

ρee =
1

Γ1(1 + 2nth)

(
Γ1nth − i

Ω

2
(ρge − ρeg)

)
. (S28)

Combining Eqs. (S26)-(S28) directly gives the solution for ρge:

ρge =
iΩ

2

Γ1(Γ2 + iδω)

Γ2Ω2 + Γ1(Γ2
2 + δω2)(1 + 2nth)

. (S29)

Using Eq. (S26) provides ρeg:

ρeg = − Ω

2Γ2

i+ δω/Γ2

(1 + (δω/Γ2)2)(1 + 2nth) + Ω2/(Γ1Γ2)
. (S30)
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Following [7], the reflection coefficient is defined as r ≡ −i(Γ1/Ω)〈σ−〉. It is easy to see that 〈σ−〉 = ρeg.
Therefore adding finite temperature to the system modifies the scattering parameters as follows:

r = r0
(−1 + iδω/Γ2)

1 +
(
δω
Γ2

)2

+
Ω2
R

Γ1Γ2

, (S31)

with r0 ≡ Γ1/(2Γ2(1 + 2nth)) and ΩR ≡ Ω/
√

1 + 2nth. The form of Eq. (S31) is the same as the usual reflection
coefficient if nth = 0. Therefore the fitted values for r0 and Γ2 are going to be independent of temperature, the
difference will appear in Γ1 and Γϕ. The transmission coefficient will be given by t = 1 + r

t = 1 + r =
1 + (δω/Γ2)2 + r0(−1 + iδω/Γ2) +

Ω2
R

Γ1Γ2

1 + (δω/Γ2)2 +
Ω2
R

Γ1Γ2

' 1 + (δω/Γ2)2 + r0(−1 + iδω/Γ2)

1 + (δω/Γ2)2
, (S32)

where the last step assumed weak driving Ω2
R � Γ1Γ2. The resulting expression is the function used to fit the data,

equation 2 in the main article. The minimum of transmission on-resonance in this case is

tmin =
4Γ1nth + 2Γϕ(1 + 2nth) + 4Γ1n

2
th

(1 + 2nth)(Γ1 + 2Γϕ + 2Γ1nth)
.

Setting nth = 0 one restores the result of tmin(nth = 0) = Γϕ/Γ2 = Γϕ/(Γ1/2 + Γϕ).
The extracted values of Γ1 from the experiment can be then bound assuming no thermal photons (lower bound) or

the maximum number of photons allowed if Γϕ = 0 (upper bound), as seen in Fig. S6
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FIG. S6. (a) Γ1 as function of qubit gap ∆, which corresponds to different coupling rates. (b) Γ1/∆ as function of ∆.

S3: COMBINED FITTING OF RE(T ) AND IM(T )

The fits in figures 2, 3 of the main text are performed simultaneously on both the real and imaginary parts. We
show here the total fitted transmission components. Fig. S7 corresponds to the fits of the tunable device while Fig. S8
corresponds to the devices with fixed coupling. As explained in the main text, even though the extracted emission
rates correspond to the regime where the rotating-wave approximation (RWA) is not valid, by rotating the basis of
the system Hamiltonian using a polaron transformation [8] the functional form of the real and imaginary parts of the
transmission follow the same analytical form as the RWA case, with a renormalized qubit splitting ∆ and emission
rate Γ1 instead. Due to the fact that most data is taken below the optimal bandwidth of our amplifier and circulators
below 4 GHz, the quality of the fits degrades as the system enters the regime Γ1 > ∆ (plots (g), (h), (i) in Fig. S7).
The only relevant parameters extracted are r0 and Γ2. As explained in the main text, r0 and Γ2 are enough to set
bounds on Γ1 and the effective temperature of the system.

S4: ESTIMATES OF DEPHASING RATE

The SQUID loop in the qubit with tunable coupling may be an additional source of decoherence, especially dephasing
noise since fluctuations in the flux Φβ will directly convert into fluctuations of the qubit gap ∆. We have assumed in
the main text that the enhanced linewidth of the qubit is due to thermal effects. The justification is made here where
we put bounds on possible sources of dephasing.

The sensitivity of the qubit gap as function of Φβ can be estimated by using the modulation of the qubit gap curve
on Fig. 4 of the main text. An upper bound for the flux sensitivity is d∆/dΦβ ∼ 7.4 GHz/Φ0. Comparing this number
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FIG. S7. (a)-(n) Combined fits corresponding to data in Fig. 3 from the main text. (o) Effective size of junction β(Φβ).
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FIG. S8. Combined fits from devices with fixed coupling from Fig. 2 of the main text (a) β = 3.5, (b) β=1.8.

to the sensitivity of the qubit to flux Φε, dωqb/dΦε ∼ 5 GHz/(2.5 × 10−3Φ0) ∼ 2 × 103 GHz/Φ0 we can see that
sensitivity to flux noise in the β-loop is negligible.

Another possible source of flux noise would be through the qubit renormalization frequency as predicted by the
spin-boson model. The model predicts [9] that the splitting of a two-level system in a bath of oscillators will be
adiabatically renormalized to ∆ = ∆0(∆0/ωC)αSB/(1−αSB), where ωC is the cutoff frequency of the environment and
∆0 is the bare qubit gap. Since αSB = Γ1/π∆ (see section S6) and therefore both Γ1(Φβ),∆(Φβ) depend on Φβ ,
fluctuations in Φβ may lead to fluctuations in ∆. The sensitivity can be calculated:

∂∆

∂Φβ
=

(
∆0

ωC

) αSB
1−αSB

[
2

d∆0

dΦβ
+ ln(∆0/ωC)

1

(1− αSB)2

Γ′1∆0 − Γ1∆′0
∆0

]
'
(

∆0

ωC

) αSB
1−αSB d∆0

dΦβ

[
2 + ln(∆0/ωC)

1 + αSB

(1− αSB)2

]
.

(S33)
Here we used that in our experiment (Fig. S6(a)) Γ′1 ≡ dΓ1/dΦβ ≈ −∆′0 ≡ −d∆0/dΦβ . The highest sensitivity occurs
for αSB = 1/2 where ∂∆/∂Φβ ' −2(d∆0/dΦβ), assuming a worst case ∆/ωC ∼ 1/10. In the main text we find
∆/ωC ∼ 1/15 as the worst case. Therefore this source of dephasing is also negligible.

I. S5: TEMPERATURE SWEEPS

We want to establish more solid bounds on the maximum effective temperature Teff = 90 mK extracted from the
fits of qubit spectra at different flux values, shown in Fig. S9(a), which complements the inferred nmax in Fig. 3(f) of
the main text. Here, we study the resonance on Fig. 3(a) from the main text, where the qubit frequency is highest, as
function of the base temperature of our cryostat, which is where our device is thermalized to.

In Fig. S9(b) we show the extracted maximum photon number nmax = (1/2)(r
−1/2
0 − 1) and the corresponding

effective temperature Teff = (~∆/kB) ln(1 +n−1
max)−1. Clearly Teff responds at all temperatures of the cryostat. Below

∼ 30 mK the effective temperature is Teff = 90 mK. Above ∼ 80 mK, Teff increases at the same rate as the cryostat
temperature, indicating that the chip temperature is now limited by the phonon bath of the mixing chamber. The
data in Fig. S9(b) support the presence of an effective bath temperature of ∼ 90 mK when the cryostat is at the base
temperature of TB = 10 mK, as was also inferred in Fig.S9(a) from the measurements of qubit spectra at different
splittings. Other experiments with superconducting qubits have inferred similar effective temperatures [10]. Teff is
therefore a good indication of the effective system temperature and supports the observed changes in transmission for
decreasing qubit splittings in Fig. 3 of the main text as having the origin in thermal effects and not dephasing.

We can also calculate the bounds on the qubit emission rate 2Γ2r0 < Γ1 < 2Γ2
√
r0, shown in Fig. S10(a), and the

normalized coupling Γ1/∆ in Fig. S10(b). The average emission rate Γ1 remains constant up to 100 mK, while the
average normalized coupling decreases slightly for increasing temperatures.

S6: RELATION BETWEEN Γ1 AND αSB

Let us begin with the spin-boson Hamiltonian

H = H0 +Hint =
~∆

2
σz +

∑
k

~ωka†kak + σx
∑
k

gk(a†k + ak), (S34)

which is characterized by the spectral function, defined as

J(ω) =
2π

~2

∑
k

g2
kδ(ω − ωk) = πωαSB, (S35)
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where we have assumed an Ohmic spectral bath. As it is usual in condensed matter physics [9], [11], [12], we have
expressed the spectral function J(ω) as function of a dimensionless constant αSB, which characterizes the different
quantum phases of the spin-boson model. More precisely, for αSB < 1/2 the system is in the Markovian regime, for
1/2 < αSB < 1 the system is in the overdamped regime, and for αSB > 1 the system is in the localized phase. Note
that our definition of J(ω) differs from the one in [9] due to a factor of 1/2 that we omit in the last term of Eq. (S34).

Our aim in this section is to relate the qubit decay rate Γ1, obtained from the master equation formalism, to the
parameter αSB.

To this end, we will derive a quantum master equation for the qubit. We start from the combined qubit-bath density
matrix in the interaction picture

ρ(t) = U(t)ρ0U
†(t), (S36)

where the unitary transformation U(t) = exp(iH0t) brings us into the rotating frame. This yields the following
time-evolution equation for the density matrix ρ(t)

ρ̇ = − i
~

[Hint, ρ(t)], (S37)

being Hint(t) the coupling Hamiltonian in the interaction picture, given by
Hint(t) = U(t)HintU(t)†

= (σ+e
i∆t + σ−e

−i∆t)
∑
k

gk(a†ke
iωkt + ake

−iωkt)

= A(t)X(t), (S38)
where A(t), X(t) are the system and bath operators, respectively.
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Equation (S36) can be formally integrated, yielding the following integro-differential equation

ρ̇(t) = ρ(0)− 1

~2

∫ t

0

dτ [Hint(t), [Hint(τ), ρ(τ)]]. (S39)

As it is commonplace, we assume the Born approximation (weak coupling to the bath, which allows us to approximate
ρ(t) = ρsys(t)⊗ρb(0), for any time t) and the Markov approximation (delta-correlated bath), which in turn corresponds
with the Markovian dynamics of the spin-boson model defined by αSB < 1/2 [8]. Under these conditions, we find a
second-order differential equation for the reduced density matrix of the system

ρ̇sys = − 1

~2

∫ t

0

dτTrb[Hint(t), [Hint(τ), ρsys(τ)⊗ ρb(0)]], (S40)

where Trb(A(t)X(t)) refers to the trace over the bath degrees of freedom X(t). Expanding the double commutator,
and using the cyclic property of the trace, Tr(AX) = Tr(XA), we can rewrite the master equation as

ρ̇sys(t) =
Γ1

2
(2σ−ρsys(t)σ+ − σ+σ−ρsys(t)− ρsys(t)σ+σ−), (S41)

where the spontaneous decay rate Γ1 is given by

Γ1 =
1

~2

∫ ∞
−∞

dτe−i∆τ 〈[X(τ), X(0)]+〉 (S42)

=
1

~2

∫ ∞
−∞

dτe−i∆τ
∑
k

g2
k[(1 + nk)eiωkτ + nke

−iωkτ ].

In equation (S43), we have introduced the symetrized bath correlation function
〈[X(τ), X(0)]+〉 = Trb[(X(τ)X(0) +X(0)X(τ))ρb(0)]

=
∑
k

g2
k[(1 + nk)eiωkτ + nke

−iωkτ ], (S43)

which can be readily calculated using the bosonic commutation relations [ak, ak′ ] = 0, [ak, a
†
k′ ] = δkk′ and the two-time

correlation functions 〈
a†(t)a(t′)

〉
=
∑
k

g2
knke

iωk(t−t′),

〈
a(t)a†(t′)

〉
=
∑
k

g2
k(1 + nk)eiωk(t′−t). (S44)

In the above expressions, nk is the average number of photons in the k-th oscillator, and is given by

nk =
1

exp(~ωk/kBT )− 1
. (S45)

For the sake of simplicity, but without loss of generality, we will assume that we are at zero temperature, so that
nk = 0. Therefore, the relaxation rate Γ1 can be rewritten as

Γ1 =
1

~2

∫ ∞
−∞

dτe−i∆τ
∑
k

g2
ke
iωkτ

=
1

~2

∑
k

g2
k

∫ ∞
−∞

dτei(ωk−∆)τ . (S46)

The last term in Eq. (S46) is nothing but the Fourier transform of the delta function

δ(ωk) =
1

2π

∫ ∞
−∞

dτeiωkτ , (S47)

yielding the following expression for Γ1

Γ1 =
2π

~2

∑
k

g2
kδ(∆− ωk) = J(∆). (S48)

Using the second identity of Eq. (S35) we finally arrive at a relation between Γ1 and αSB,

Γ1 = παSB∆. (S49)

It is worth mentioning that this result can be generalized for a bath at finite temperature T [11], [13], [14].
Eq. (S49) is valid in the Born-Markov and rotating-wave approximations. It is known from the spin-boson model

that up to αSB = 1/2 (see equation 5.23 from reference [9]), corresponding to Γ1/∆ ∼ 1 and therefore well within the
ultrastrong coupling regime, Eq. (S49) is still correct. The regime 0.5 < αSB < 1 presents more difficulties, as the
spin-boson model becomes nonperturbative. Using a polaron transformation [8], an analytical model has been found
[15] to yield correct results for αSB > 0.1. Using this technique we calculate values for Γ1/∆ as function of αSB and
compare it to equation (S49), shown in Fig. S11. The results show that equation (S49) is a lower bound for αSB > 0.1.
We assume in the analysis of our results for Γ1/∆ > 1.5 that equation (S49) remains a lower bound.
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FIG. S11. Polaron ansatz [15] calculations of Γ1/∆ as function of αBS (solid-black line) compared to the Born-Markov
approximation (dashed-blue line), equation (S49). Clearly, equation (S49) is a lower bound for αSB > 0.1.

S7: THE MAXIMUM COUPLING

As detailed in [4], a flux qubit coupled to a transmission line, sharing a junction, can be calculated from the case
of coupling to a single-mode resonator. We derive here the expression of the coupling rate that is used in Fig. 4(a) of
the main text to fit the experimental normalized coupling rate Γ1/∆.

The quantized flux field in a 1D-transmission line assuming periodic boundary conditions (suitable for infinite
transmission lines) takes the form

φ̂ =
∑
k

√
~

2c0ωkL

(
âke

i(kx−ωkt) + â†ke
−i(kx−ωkt)

)
, (S50)

where the line has length L, capacitance and inductance per unit length c0, l0 and mode frequency ωk. The dispersion
relation is given by ωk = kc = k(l0c0)−1/2, c being the speed of light in the line. The coupling term takes the form
(see Supplementary material in [4]):

Ĥint = ϕ0ϕ̂β
1

l0

∂φ̂

∂x
δ(x), (S51)

which is nothing but the current along the transmission line times the effective node flux generated by the qubit ϕ0ϕ̂β ,
with ϕ0 = Φ0/2π the reduced flux quantum and ϕ̂β the phase operator across the qubit coupling junction β. δ(x) is
the Dirac delta, since the qubit is assumed to sit at the origin x = 0. The strength of the coupling to mode k is given
by [4]

gk =
1

l0
ϕ0ϕβ

1√
L

√
~ωk

2c0c2
, (S52)

with ϕβ ≡ 〈1|ϕ̂β |0〉 the matrix element of the phase operator across the qubit coupling junction β. The spectral
density J(ω) [16], which as shown in section S6 corresponds to the spontaneous emission rate Γ1, can be directly
calculated

J(ω) = 2π
∑
k

(|gk|/~)2δ(ω − ωk) = 2π
∑
k

1

l20

1

L

ωk
2~c0c2

ϕ2
0|ϕβ |2δ(ω − ωk). (S53)

Taking the limit to the continuum, using that the density of states is L/2π,

J(ω) = 2

∫ ∞
0

dωk
ωk

2~c0l20c3
ϕ2

0|ϕβ |2δ(ω − ωk) =
ω

~Z0
ϕ2

0|ϕβ |2, (S54)

Z0 = (l0/c0)1/2 being the characteristic impedance of the transmission line. The factor of 2 in front of the integral is
due to the fact that the frequency ωk is degenerate for wavectors k and −|k|. By integrating over k < 0 and k > 0
we are taking into account the current fluctuations of the two semi-infinite transmission lines, which represent two
independent baths. Therefore, and connecting to the traces in Fig. 4(a) of the main text, we can express the reduced
coupling Γ1/∆ as function of the expectation value of the phase operator and the impedance of the line:

J(∆)

∆
=

Γ1

∆
=

1

4e2

~
Z0
|ϕβ |2 =

1

2π

RQ
Z0
|ϕβ |2, (S55)
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where RQ = h/(2e)2 ' 6.5 kΩ is the resistance quantum. Equation (S55) indicates that in order to increase the
coupling to its highest value, Z0 has to be as low as possible and |ϕβ | must be increased by making the β-junction size
smaller and therefore having a phase drop of order 1 across it. Achieving Γ1/∆ ≈ 10 is therefore within reach. From
this analysis the quantity Γ1/∆ can be understood as a normalized coupling strength.

Equation (S55) has the same validity as equation (S49) since it relies on equation (S48). Therefore it is a lower
bound for the range 0.5 < αSB < 1, or 1.5 < Γ1/∆ < 3. This is verified in our experiment where in Fig. 4(a) the
values of Γ1/∆ lie above the curves for β < 2, where αSB > 0.5.
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