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Abstract: 

Wave control is usually performed by spatially engineering the properties of a medium. Because 

time and space play similar roles in wave propagation, manipulating time boundaries provides a 

complementary approach. Here, we experimentally demonstrate the relevance of this concept by 

introducing instantaneous time mirrors. We show with water waves that a sudden change of the 

effective gravity generates time-reversed waves that refocus at the source. We generalize this 

concept for all kinds of waves introducing a universal framework which explains the effect of any 

time disruption on wave propagation. We show that sudden changes of the medium properties 

generate instant wave sources that emerge instantaneously from the entire space at the time 

disruption. The time-reversed waves originate from these “Cauchy sources” which are the 

counterpart of Huygens virtual sources on a time boundary. It allows us to revisit the holographic 

method and introduce a new approach for wave control. 

  



Holographic methods are based on the time-reversal invariance of wave equations. They 

rely on the fact that any wave field can be completely determined within a volume by knowing the 

field (and its normal derivative) on any enclosing surface1,2. Hence, information reaching the 2D 

surface is sufficient to recover all information inside the whole volume. Based on these properties, 

Denis Gabor introduced the Holographic method, which provides an elegant way to back-propagate 

a monochromatic wave field and obtain 3D images. More recently, time-reversal mirrors exploited 

the same principles extended to a broadband spectrum to create time-reversed waves. This latter 

approach has been implemented with acoustic3, elastic4, electromagnetic5 and water waves6,7. It 

requires the use of emitter-receptor antennas positioned on an arbitrary enclosing surface. The wave 

is recorded, digitized, stored, time-reversed and rebroadcasted by the antenna array. If the array 

intercepts the entire forward wave with a good spatial sampling, it generates a perfect backward-

propagating copy. Note that this process is difficult to implement in optics8,9, and the standard 

solution is to work with monochromatic light and use nonlinear regimes such as three-wave or 

four-wave mixing10,11.  

Here, within the general concept of spacetime transformations12-16, we completely revisit 

the holographic method and introduce a new way to create wideband time-reversed wave fields in 

2D or 3D by manipulating time boundaries. Time boundaries have recently received much attention 

because they have been shown to play a major role in several phenomena such as time refraction, 

dynamic Casimir effect, Hawking radiation, photon acceleration and self-phase modulation17–25. In 

addition, different suggestions to process wideband time-reversal have been proposed in optics to 

associate both time and spatial modulation of the medium refractive index. These suggestions, 

mainly for 1D propagation, rely on a dynamic tuning of photonic crystals26–28.  



Our approach is related to the Cauchy theorem, which states that the wave field evolution 

can be deduced from the knowledge of this wave field (and its time derivative) at one single time 

(the so-called initial conditions)29. It is the dual time equivalent of standard time reversal based on 

spatial boundaries. We use a sudden modification of the wave propagation properties of the 

medium to create a time-reversed wave. This time disruption realizes an instantaneous time mirror 

(ITM) in the entire space without the use of any antenna or memory. The information stored in the 

whole medium at one instant plays the role of a bank of memories.  

We will subsequently introduce the concept of ITM and show its first experimental 

demonstration. The experiment is spectacular because it is conducted with water waves and can 

therefore be observed with the naked eye. We first interpret the backward wave propagation in 

ITM as an emission by isotropic sources created during the time disruption. These “Cauchy 

sources” define a new set of initial conditions for the wave field propagation after the ITM, 

allowing us to revisit the Huygens-Fresnel principle. We then discuss this experiment in terms of 

time discontinuities and conservation laws. Finally, we analyze the space-time symmetries of ITM 

compared to standard mirrors.  

In the 19th century, Loschmidt challenged Boltzmann’s attempt to describe irreversible 

macroscopic processes with reversible microscopic equations30,31. He imagined a daemon capable 

of instantaneously reversing all velocities of all particles in a gas. Such an operation can be ascribed 

to a change in initial conditions resulting in a time-reversed motion of all particles that would return 

to their initial positions. The extreme sensitivity to initial conditions that lies at the heart of chaotic 

phenomena in nonlinear dynamics renders any such particulate scheme impossible. Waves are 

more amenable because they can be described in many situations by a linear operator, and any error 

in initial conditions will not suffer from chaotic behavior. The wave analog of this  



 

Figure 1 | Schematic of the Instantaneous Time Mirror. A wave source emits at time 𝑡0 a wave 

packet which propagates in a given medium. A sudden spatially homogeneous disruption of the 

wave propagation properties occurs in the entire medium at time 𝑡𝐼𝑇𝑀 = 𝑡0 + 𝛥𝑡. It results in the 

production of a counter propagating time-reversed wave in addition to the initial forward 

propagating wave. The counter propagating wave refocuses at the source position at time 𝑡0 + 2𝛥𝑡.  

  



Loschmidt daemon is related to the Cauchy theorem. The latter states that the future evolution of 

any wave field 𝜙(𝒓, 𝑡) at position 𝒓 and time 𝑡 can be inferred from the knowledge of the set of 

initial conditions (𝜙,
𝜕𝜙

𝜕𝑡
)

𝑡𝑚

, with the field amplitude 𝜙(𝒓, 𝑡𝑚) and time derivative 
𝜕𝜙

𝜕𝑡
(𝒓, 𝑡𝑚) at a 

given time 𝑡𝑚, in the whole space. The analog of the particle velocity reversal is to take new set of 

initial conditions (𝜙, −
𝜕𝜙

𝜕𝑡
)

𝑡𝑚

 that cause a time-reversed wave whose time dependence is inverted. 

However, because of the wave superposition principle, the emergence of this time-reversed wave 

is not limited to this choice of initial conditions. For instance, the new initial condition (𝜙, 0)𝑡𝑚
 

can be split into 
1

2
(𝜙,

𝜕𝜙

𝜕𝑡
)

𝑡𝑚

 associated with a forward wave and 
1

2
(𝜙, −

𝜕𝜙

𝜕𝑡
)

𝑡𝑚

 associated with a 

backward time-reversed wave. This particular choice erases the arrow of time by starting from a 

“frozen” picture of the wave field at time 𝑡𝑚 with no favored direction of propagation. Similarly, 

a new set of initial conditions (0,
𝜕𝜙

𝜕𝑡
)

𝑡𝑚

 in which the wave field is null would also comprise a 

backward-propagating wave with a negative sign. More generally, the superposition of backward- 

and forward-propagating waves results from the decoupling of the wave field from its time 

derivative (see Fig. 1 and the Supplementary Methods). Because both are bound together by the 

wave celerity, its disruption can lead to such decoupling. This offers a straightforward way to 

experimentally implement an instantaneous time reversal mirror.  

  



Figure 2 | ITM experimental implementation. a, Experimental setup. A bath of water is placed 

on a shaker in order to apply a vertical jolt. Another shaker is used to hit the water surface with a 

tip to generate surface waves. The deflection of a laser beam is used to measure the local surface 

slope. The laser is placed on a computer controlled translation device to scan the surface. b, Typical 

time variations of the vertical position of the emitter (a tip) in blue and of the bath together in red 

with bath acceleration 𝛾 in an ITM experiment. 𝛾𝑚 is the maximum downwards acceleration. 𝛥𝑡 is 

the time delay between the wave emission and the jolt. c, Image sequence of an ITM experiment 

(top view) with a point source showing the divergent wave and the time reversed wave which 

diverges again after focusing back at the source position. 𝛾𝑚 =-21 g and 𝛥𝑡 = 60 ms. The scale bar 

is 1 cm (see Supplementary Video 1).  



In this study, we use gravity-capillary waves to implement the concept of ITM. Because the surface 

wave celerity depends on the effective gravity, the disruption of the celerity is achieved by applying 

a vertical jolt to the whole liquid bath. Figure 2a shows the experimental setup. A bath of water is 

placed on a shaker to control its vertical motion. A plastic tip fixed on another shaker is used to hit 

the liquid surface and generate a point source of waves at time 𝑡0 = 0. Figure 2b shows a typical 

time sequence of the vertical tip and bath motions used to generate the surface waves and 

implement the ITM. An image sequence of the wave propagation on the bath taken from above is 

shown in Fig. 2c. A circular wave packet centered on the impact point is emitted as the tip hits the 

surface. The average wave propagation velocity is on the order of magnitude of 10 cms-1. After 

time 𝑡𝐼𝑇𝑀 = 60 ms, a vertical downward jolt is applied to the bath. The bath acceleration reaches 

𝛾𝑚 = −21 𝑔 in approximately 2 ms. The propagation of the initial outward-propagating wave is 

not significantly affected by this disruption. However, at the time of the disruption, we observe the 

apparition of a backward-converging circular wave packet that diverges again upon trespassing the 

original impact point source.  

  



Figure 3 | ITM on a wave packet. a, Evolution of the profile of a wave packet produced by a 

point source and later subjected to an ITM (see Supplementary Video 2). The surface height (black 

solid line) is obtained by integrating slope measurements carried out on a line going through 

the emission point (see Fig. 1 and Supplementary Video 1). To the original wave packet 

propagating from left to right, a time reversed one propagating from right to left is added as the ITM 

occurs. The two counter propagating components of the surface profile are separated using Fourier 

analysis: The dark blue line represents the ongoing forward wave while the light blue line 

represents the time reversed wave. b, Relative Amplitude of the time reversed wave normalized by 

the forward wave amplitude as a function of the jolt amplitude. The measurement is performed in 

water at 1.6 cm from the point source. The ITM is applied with a time delay of Δ𝑡 =  170 ms. The 

solid line is a linear fit which is coherent with the theory (see Supplementary Methods). c, 

Normalized spectra of the time reversed wave packet (light blue) and of the initial forward wave 

packet (dark blue). Both are similar with respective maximum frequency 𝜔𝑚𝑎𝑥 ≈ 35 Hz and full 

width at half maximum Δ𝜔 ≈ 35 Hz.  



Figure 3a is a time sequence of the profile of a wave packet propagating originally from left to 

right. The wavelength spreading induced by dispersion is clearly visible. The ITM generates a time-

reversed wave packet propagating in the opposite direction. The resulting surface profile can be 

decomposed into the two counter-propagating wave packets using Fourier analysis. We observe 

that the shape of the backward wave packet is very similar to that of the initial wave packet. Both 

profiles almost superimpose in shape and position when measured at identical times Δ𝑡 from the 

ITM. A phase shift of approximately /2 is observed between the forward and backward wave 

packets at the time of the ITM. In contrast with standard reflection, the backward wave packet is 

not spatially reversed. The time-reversed nature of the backward wave allows the wave packet to 

compensate for dispersion. The fast short wavelengths will catch up with the slow long 

wavelengths, thus refocusing the wave packet. Its amplitude linearly depends on the vertical 

acceleration of the bath (Fig. 3b). ITM is a broadband time reversal mirror. The time-reversed 

spectrum is independent of the jolt amplitude and is nearly identical to that of the initial wave (Fig. 

3c).  

  



 

Figure 4 | Image sequence of the instantaneous time reversal of a complex wave field. The 

source is composed of (a) tips that hit the surface positioned in the shape of a Smiley (see 

Supplementary Video 3) or (b) air blowing between two sealed Plexiglas plates placed at 1 cm 

above the bath with holes positioned in the shape of an Eiffel tower (see Supplementary Video 4). 

In the sequence (b), the image without blowing has been subtracted as a reference. c, is the 

numerical simulation of (b) using the ITM model for water waves and the experimental jolt profile 

(see Supplementary Method and Video 5). The images on the left show this emission process. At 

the instant of ITM, the wave field features a complex interference pattern in which the original 

shape is not apparent anymore. As the time reversed wave refocuses, the shape of the source 

becomes visible again. Time interval between two images is 26 ms for (a) and 66 ms for (b) and 

(c). The scale bar is 1 cm. 

  



Figure 4 shows two examples of ITM performed on sources with complex source shapes. In both 

cases, the ITM disruption occurs long after the wave field has lost any resemblance to its initial 

shape at the time of emission. The refocus back to its initial shape indicates the time reversal nature 

of the process.  

We now focus on the underlying principles of ITM. ITM is implemented through a wave celerity 

disruption induced by the gravity jolt. For the sake of generality, let us consider waves governed 

by d’Alembert’s wave equation. We introduce a time-dependent phase velocity 𝑐(𝑡) = 𝑐0/𝑛(𝑡), 

where 𝑛(𝑡) is a time-dependent index and 𝑐0 is the phase velocity in the absence of ITM. The 

disruption undergone by the medium in an ITM can be modelled by a Dirac function such that 

𝑐(𝑡)2 = 𝑐0
2(1 + 𝛼𝛿(𝑡 − 𝑡𝐼𝑇𝑀)). The wave equation can be written as a nonhomogeneous equation 

in which the equivalent source term 𝑠(𝒓, 𝑡) is induced by the velocity disruption (see 

Supplementary Methods): 

∆𝜙(𝒓, 𝑡) −
1

𝑐0
2

 𝜕2𝜙

𝜕𝑡2
(𝒓, 𝑡) = 𝑠(𝒓, 𝑡),                (1) 

with 𝑠(𝒓, 𝑡) = −
𝛼

𝑐0
2 𝛿(𝑡 − 𝑡𝐼𝑇𝑀)

 𝜕2𝜙

𝜕𝑡2
(𝒓, 𝑡).  

The source term is localized in time but delocalized in space. It corresponds to an instantaneous 

source that is proportional to the second time derivative of the wave field at the instant 𝑡𝐼𝑇𝑀 of the 

disruption. Equation (1) can also be applied in the Fourier domain to water waves to take care of 

dispersion. All the results subsequently presented for d’Alembert waves can thus be similarly 

recovered for water waves (see Supplementary Methods). Considering both the specific dispersion 

relation of these waves and the experimental profile of the jolt, we used Equation (1) to simulate 

ITM action in our experiments (see Supplementary Methods).  



This description with a source term allows us to revisit the Huygens-Fresnel theory. To model the 

wave propagation, Huygens hypothesized that every point on a wavefront emits secondary 

spherical wavelets28. The wavefront at any later time 𝑡 + Δ𝑡 conforms to the upper envelope of the 

wavelets emanating from every point on the wavefront at a prior instant 𝑡 (Fig. 5a). However, 

neglecting the backward-propagating envelope was arbitrary. Only later, Fresnel30, followed by 

Kirchhoff31, ensured that the wavelets interfere destructively in the backward direction and 

maintain the expected forward propagation by adding a dipolar component to the secondary 

sources.  

In our experiment, the temporal disruption modifies the classical interplay between the dipolar and 

monopolar sources that causes a propagative wave. It suddenly creates real monopolar sources 

𝑠(𝒓, 𝑡) instantaneously in the whole space (see Eq. 1). These sources isotropically radiate, 

generating an additional wave field, both forward and backward (see Fig. 5a). Because they modify 

the initial conditions of the wave field on a time boundary, these sources can be termed Cauchy 

sources.  

  



  

Figure 5 | The time equivalent of a mirror. a, Schematics comparing the standard wave 

propagation using secondary Huygens-Fresnel sources and the creation of real secondary “Cauchy” 

sources during ITM. b, Schematics of an incident wave field 𝜙𝑖 impinging on a time slab. 𝜙𝐵 is 

the backward propagating field. 𝑡𝑖𝑗 and 𝑟𝑖𝑗 are the transmission and reflection time Fresnel 

coefficients between medium i and j (see Supplementary Methods). Schematics of a standard 

spatial mirror (c) and an instantaneous time mirror (d). These mirrors are the limit case of an 

infinitely thin space slab and an infinitely thin time slab respectively (see Supplementary Methods). 

The directions of the arrows show the spatio-temporal directions of wave propagation. With a 

standard mirror, the reflected beams are equivalent to those emitted by a virtual source situated at 

the symmetric point on the other side of the mirror. For the ITM, the image is situated at the 

symmetric instant of that of emission with respect to the time interface. Because of causality, this 

image is real and corresponds to a focalization point. e, Spatiotemporal diagram of the slope 

measurements in an ITM experiment with a point source (see Fig. 2c). The diagram is symmetrized 

for clarity. The area in red highlights the ITM disruption occurring 80 ms with an approximate 

width of 8 ms. From this moment on, the time reversed wave is observed. As it converges back to 

the emission point, this packet narrows down; the effect of dispersion being compensated.  

  



What is the relation between these Cauchy sources and the change of initial conditions induced by 

ITM? Just before the ITM at 𝑡𝐼𝑇𝑀
− , the wave field is associated with (𝜙,

𝜕𝜙

𝜕𝑡
)

𝑡𝐼𝑇𝑀
−

. It is modified by 

the disruption into (𝜙,
𝜕𝜙

𝜕𝑡
)

𝑡𝐼𝑇𝑀
+

 just after the ITM at 𝑡𝐼𝑇𝑀
+ . The new initial state is given by (see  

Supplementary Methods): 

(𝜙,
𝜕𝜙

𝜕𝑡
)

𝑡𝐼𝑇𝑀
+

= (𝜙(𝒓, 𝑡𝐼𝑇𝑀
− ),

𝜕𝜙

𝜕𝑡
(𝒓, 𝑡𝐼𝑇𝑀

− ) +
𝛼

𝑐0
2

 𝜕2𝜙

𝜕𝑡2
(𝒓, 𝑡𝐼𝑇𝑀

− ))       (2) 

This new initial state can be decomposed into the superposition of the original state of the 

unperturbed wave field (𝜙,
𝜕𝜙

𝜕𝑡
)

𝑡𝐼𝑇𝑀
−

 plus an added state (0,
𝛼

𝑐0
2

 𝜕2𝜙

𝜕𝑡2 )
𝑡𝐼𝑇𝑀

−
. This latter term can again 

be decomposed in two states as previously discussed by using the superposition principle: 

𝛼

2𝑐0
2 (

𝜕𝜙

𝜕𝑡
,

 𝜕2𝜙

𝜕𝑡2 )
𝑡𝐼𝑇𝑀

−
 and −

𝛼

2𝑐0
2 (

𝜕𝜙

𝜕𝑡
, −

 𝜕2𝜙

𝜕𝑡2 )
𝑡𝐼𝑇𝑀

−
, which correspond to a forward-propagating wave 

field and a time-reversed backward-propagating wave field, respectively. Both wave fields are 

proportional to the time derivative of the original incident wave field. Provided that the bandwidth 

of the time-reversed wave is not too large compared to the central frequency, these wave fields are 

proportional to the original wave field itself as observed in the experiments. Note that the expected 

/2 phase shift between the wave field and its derivative is the one observed in the experiment (see 

Fig. 3a). In practice, the time-reversed bandwidth is limited by that of the ITM disruption (see Fig. 

3c), which should be non-adiabatic for wave propagation.   

ITM can be analyzed in the framework of time refraction16-19. The instantaneous time disruption 

for the wave speed can be considered as the limiting case of a rectangular time profile with two 

discontinuities: at time 𝑡𝐼𝑇𝑀
− , the wave speed jumps from c0 to c1=c0/n1 and then, at time 𝑡𝐼𝑇𝑀

+ , 

changes back to its original value c0. A temporal discontinuity in a homogeneous medium 



conserves the momentum but not the energy. In our experiment, this energy brought to the wave 

field is provided by the jolt. The time analog of the Fresnel formula can be obtained from 

conservation laws18-19. Hence, a monochromatic wave 𝑒𝑖(𝒌.𝒓−𝜔0𝑡)  of wave vector k and angular 

frequency 𝜔0 is split at the time discontinuity in a “transmitted” wave 𝑡01𝑒𝑖(𝒌.𝒓−𝜔1𝑡) and a 

‘reflected’ wave 𝑟01𝑒𝑖(𝒌.𝒓+𝜔1𝑡), where 𝜔1 = 𝜔0/𝑛1 is the angular frequency in medium 1, and 𝑡01 

and 𝑟01 are temporal Fresnel coefficients for time refraction and reflection, respectively. Each wave 

emerging from the first temporal discontinuity will be split again into two waves at the second 

discontinuity (see Fig. 5b). This time slab is the time analogue of a Fabry-Pérot resonator. 

However, because of causality, multiple reflections are not permitted17,18. The time-reversed wave 

field is thus the result of interference between two backward waves with opposite signs (because 

𝑟01𝑡10 = −𝑟10𝑡01). This explains why the resulting time-reversed field is not the perfect time 

reverse of the incident wave field 𝜙, but rather of its derivative 𝜕𝜙/𝜕𝑡 in the limiting case of an 

instant disruption (see the Supplementary Methods).  

We now focus on the spatio-temporal symmetries of ITMs using plane waves without loss of 

generality. A standard “spatial” mirror (see schematic Fig. 5c) changes the sign of the wave vector 

normal component to its surface 𝑘⊥. It changes the wave characteristics as (𝑘⊥, 𝑘∥, 𝜔) →

(−𝑘⊥, 𝑘∥, 𝜔) by performing a space reversal in the normal direction. The incident wave 𝜙(𝑥, … , 𝑡) 

becomes the reflected wave 𝜙(2𝑥𝑚 − 𝑥, … , 𝑡) for a mirror positioned along the 𝑥 axis at 𝑥𝑚. For a 

point source, the reflected waves appear as though it is emitted from a virtual image located on the 

other side of the mirror. As previously mentioned, ITM symmetry is given by (𝑘⊥, 𝑘∥, 𝜔) →

(𝑘⊥, 𝑘∥, −𝜔). This corresponds to a time reversal: the incident wave 𝜙(𝑥, … , 𝑡) becomes the time-

reversed wave 𝜙(𝑥, … ,2𝑡𝐼𝑇𝑀 − 𝑡) for an ITM at 𝑡𝐼𝑇𝑀. The direction of propagation for a plane wave 

is given by its phase 𝐤. 𝐫 − ωt, which depends on the relative signs of 𝐤 components and ω. Hence, 



in terms of symmetries, an ITM is equivalent to (𝑘⊥, 𝑘∥, 𝜔) → (−𝑘⊥, −𝑘∥, 𝜔). Because all 

components of 𝐤 are reversed, waves propagate backward. In the space-time representation of the 

ITM (see Fig. 5d), the waves refocus at their emitter positions but on the other time side of the 

mirror in the time domain. This can be observed directly in the experiment on the spatio-temporal 

graph of waves emitted from the point source undergoing an ITM (see Fig. 5e). Note that this 

transformation is also directly related to negative index materials. Time reversal and negative 

refraction have been shown to be intimately linked processes26. 

Manipulating the wave propagation from the time boundaries offers a new approach to control and 

manipulate wave propagation. Time disruptions perform instantaneous time mirrors 

simultaneously acting in the entire space at once and without the use of external emitters. This 

approach will be generalized to create a dynamic control of the spatio-temporal boundaries of the 

medium. Water waves present unique advantages for implementation and visualization. In this 

perspective, several possibilities of precise and rapid spatio-temporal wave control are offered, for 

instance, by using ultrasound or electrostatic forces on the liquid surface. In the future, we intend 

to use these concepts of spacetime transformation to perform water wave time cloaking and to 

revisit Faraday instability as a periodic time Bragg mirror. From this new perspective, we will 

experimentally address fundamental issues such as the dynamic Casimir effect. 
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