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The possibility of transporting spin information over long distances in graphene, owing to its

small intrinsic spin-orbit coupling (SOC) and the absence of hyperfine interaction, has led to in-

tense research into spintronic applications. However, measured spin relaxation times are orders of

magnitude smaller than initially predicted, while the main physical process for spin dephasing and

its charge-density and disorder dependences remain unconvincingly described by conventional

mechanisms. Here, we unravel a spin relaxation mechanism for nonmagnetic samples that fol-

lows from an entanglement between spin and pseudospin driven by random SOC, which makes

it unique to graphene. The mixing between spin and pseudospin-related Berry’s phases results

in fast spin dephasing even when approaching the ballistic limit, with increasing relaxation times

away from the Dirac point, as observed experimentally. The SOC can be caused by adatoms, rip-

ples or even the substrate, suggesting novel spin manipulation strategies based on the pseudospin

degree of freedom.

The electronic properties of monolayer graphene strongly differ from those of two-dimensional metals

and semiconductors in part because of inherent electron-hole band structure symmetry and a particular

density of states which vanishes at the Dirac point [1]. Additionally, the sublattice degeneracy and

honeycomb symmetry lead to eigenstates that hold an additional quantum (Berry’s) phase, associated

with the so-called pseudospin quantum degree of freedom. All of these electronic features are manifested

through the Klein tunneling phenomenon [2], weak antilocalization [3] or the anomalous quantum Hall

effect [4]. The possibility of using the pseudospin as a means to transport and store information has also

been theoretically proposed [5, 6]. There, the role of the pseudospin is equivalent to that of the spin in

spintronics, such as in the pseudospin analogue of the giant magnetoresistance in bilayer graphene [6].

Even though pseudospin-related effects drive most of the unique transport signatures of graphene, the

role of the pseudospin on the spin relaxation mechanism has not been explicitly addressed and quantified.

Pseudospin and spin dynamics are usually perceived as decoupled from each other, with pseudospin

lifetimes being much shorter and pseudospin dynamics much faster than those for spins. However, this

picture breaks down in the vicinity of the Dirac point, a region that is usually out of reach of perturbative

approaches and that is particularly relevant for experiments, because Fermi energies can only be shifted

by about 0.3 eV via electrostatic gating. Moreover, in the presence of SOC, spin couples to orbital

motion, and therefore to pseudospin [7], so that spin and pseudospin dynamics should not be treated

independently. Actually, any initially spin polarized state injected at low energy (for instance |Ψ〉⊗| ↑〉),

should evolve under the time-evolution operator (including the spin-orbit coupling term) towards an
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entangled state∼

 0

1

⊗| ↑〉±
 i

0

⊗| ↓〉 (introducing the pseudospin as a column vector), exhibiting

a spin-pseudospin locking effect (see discussion associated to Figs. S1 and S2 in the Supplementary

Information), and therefore entangled spin and pseudospin dynamics.

The reason for overlooking the role of the pseudospin on the spin dynamics is perhaps rooted in the

fact that the spin transport properties appear remarkably similar to those found in common metals and

semiconductors [8]. Indeed, spin precession measurements in nonlocal devices result in experimental

signatures that would be indistinguishable from those obtained in a metal such as aluminium [9], or

a semiconductor such as GaAs [10], with extracted spin relaxation times τs that are also typically of

the same order of magnitude (a few nanoseconds or lower). Spin relaxation in graphene has therefore

been interpreted using the conventional experimental manifestations of either the Elliot-Yafet (EY) or

Dyakonov-Perel (DP) mechanism [11–16]. In the EY scenario, the spin relaxation time is determined

by the spin mixing of carriers and the SOC of the scattering potential, and thus it is usually assumed

to be proportional to the momentum relaxation time as τs ≈ α · τp , with α � 1 (in alkali metals

α ∼ 104 − 106) [8]. In contrast, in the DP mechanism spin precesses about an effective magnetic field

whose orientation is fixed by the momentum direction during free propagation of electrons. Such orien-

tation changes at each scattering event, which results in a different scaling behavior as 1/τDPs ∼ Ω2τp

[8] (with Ω the average magnitude of the intrinsic Larmor frequency over the momentum distribution).

Experimental estimates of τs and τp are generally obtained in a phenomenological way by fitting the ex-

perimental resistivity curves to the theoretical formulae obtained using semi-classical transport equations

[12, 17]. However, this phenomenological analysis is not well connected with the microscopic interpre-

tation. First of all, the weak SOC in graphene would suggest τs in the microsecond range [18–20], in

clear disagreement with experimental data. In addition, the τs estimated in high-mobility graphene with

long mean free paths remains unsatisfactorily interpreted with a single relaxation mechanism, say EY

or DP [13, 21, 22]. The suppression of τs in clean graphene has been tentatively associated to an en-

hanced (intrinsic or extrinsic) spin-orbit coupling due to mechanical deformations such as ripples [23],

or unavoidable adatoms incorporated during the device fabrication process [24, 25], but the ultimate and

microscopic nature of spin relaxation at play remains controversial and elusive [26].

Here, we explore this key fundamental issue by investigating the effect of weak perturbation induced

by low densities of ad-atoms (down to 1012cm−2), which introduce a random Rashba field in real space

but vanishingly small intervalley scattering, yielding long mean free paths. For typical electron densities
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within [1010, 1012]cm−2, the Fermi wavelength (λF = 2
√
π/n, n the charge density) lies between 20 and

200 nm and thus exceeds the mean separation between adatoms (∼ 10nm) where spin-orbit scattering

occurs, which questions the use of a standard semiclassical description. To study spin dynamics (and spin

relaxation), we use a non-perturbative method by solving the full time-dependent evolution of initially

spin polarized wavepackets, either through a direct diagonalization of a continuum model, or a real

space algorithm and a tight-binding model for a microscopic disorder. We describe the system of a

graphene monolayer functionalized with a random distribution of adatoms. The electronic structure of

clean graphene is captured by the usual π-π* orthogonal tight-binding model (with a single pz-orbital

per carbon site, zero onsite energies and nearest neighbors hopping γ0). The presence of non-magnetic

adatoms randomly adsorbed at the hollow positions on the graphene sheet introduces additional local

spin-orbit coupling terms (Fig. 1a,b), defined as [27].

H =− γ0

∑
〈ij〉

c+
i cj +

2i√
3
VI

∑
〈〈ij〉〉∈R

c+
i ~s · (~dkj × ~dik)cj

+ iVR
∑
〈ij〉∈R

c+
i ~z · (~s× ~dij)cj − µ

∑
i∈R

c+
i ci (1)

The first term is the nearest neighbor hopping with γ0 = 2.7 eV. The second term is a complex next

nearest neighbor hopping term which represents the intrinsic SOC induced by adatoms, with ~dkj and
~dik the unit vectors along the two bonds connecting second neighbors, ~s is a vector defined by the Pauli

matrices (sx, sy, sz), and VI the intrinsic SOC strength. The third term describes the Rashba SOC (VR)

which explicitly violates ~z → −~z symmetry, with ~z being a unit vector normal to the graphene plane.

The last term denotes a potential shift µ associated with the carbon atoms in the random plaquettes R

adjacent to adatoms (Fig. 1b). Such shift is due to weak electrostatic effects that arise from charge

redistribution induced very locally around the adatom [27].

A Rashba splitting has been observed experimentally at the graphene/nickel and graphene/gold (Au)

interfaces with spin splitting of up to 100 meV [28, 29]. Gold and nickel as well as other materials

like titanium, cobalt or chromium, are usually present during the fabrication of the nonlocal spin valves

that are used to determine τs and likely leave residues on the exposed graphene surface. Hereafter, we

consider the case of Au adatoms whose influence on the transport properties of graphene has been studied

experimentally [24]. The tight-binding parameters to describe both intrinsic and Rashba SOC induced

by such adatoms are extracted from ab-initio calculations [29]. We then explore how the spin relaxation

times scale as a function of the adatom density and adatom-induced local potential shift.
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The spin dynamics is investigated by computing the time-dependence of the spin polarization defined

by

~S(E, t) =
〈Ψ(t)|~sδ(E −H) + δ(E −H)~s |Ψ(t)〉

2〈Ψ(t)|δ(E −H)|Ψ(t)〉
(2)

assuming that spins are initially injected out-of-plane (z direction), i.e.|Ψ(t = 0)〉 =|ψ↑〉. The time

evolution of the wavepackets |Ψ(t)〉 is obtained by solving the time-dependent Schrödinger equation and

the diffusion coefficients Dx(E, t) = d
dt

∆X2(E, t) are evaluated from the spreading of wavepackets by

using real space propagation methods [30]. We focus on the expectation value of the spin z-component

Sz(E, t). Figure 1 shows the typical behavior of Sz(E, t) for two selected energies (at the Dirac point and

at E = 150 meV) and two adatom densities ρ = 0.05% (about 1012 adatoms per cm2) (c) and ρ = 8%

(d). The time dependence of Sz(E, t) is very well described by cos(2πt/TΩ)e−t/τs , introducing the spin

precession period TΩ and the spin relaxation time τs, which are extracted from fitting the numerical

simulations (solid lines). The time dependence of the modulus of the full spin polarization vector |~S| =

|(〈sx〉, 〈sy〉, 〈sz〉)| also exhibits an unambiguous signature of spin relaxation (Supplementary Fig. S3).

Figure 2 gives τs and TΩ extracted from the fits of Sz(E, t) for varying adatom density. One first observes

that the spin precession period is energy independent and is precisely equal to TΩ = πh̄/λ̄R (with λ̄R =

3ρVR an average SOC strength) even for the lowest coverage, which agrees with the estimate based on

the continuum model [19]. In contrast, the spin relaxation time displays a significant energy dependence.

A V-shape is obtained for low energy, with τs being minimal at the Dirac point with values ranging from

0.1 ps to 200 ps when tuning the adatom density from 8% to 0.05% (as given in Fig.3a, main frame).

Based on the observed scaling τs ∼ 1/ρ (see Fig. 3b), one can further extrapolate the spin relaxation

times for even smaller defect density, obtaining τs ∼ 1 − 10ns for adsorbate densities decreasing from

1011cm−2 down to 1010cm−2. The obtained V-shaped energy dependence and the absolute values of τs

are remarkably similar to those reported experimentally [11, 12, 17, 24].

The faster relaxation at the Dirac point is actually evident in Figs. 1c and 1 d. The reason for

this behaviour is the decay of the coupling between the pseudospin and momentum and the enhanced

contribution of the SOC interaction, which leads to spin-pseudospin entanglement. The details of the

entanglement are further described in Eq. (3) below and the Supplementary Information.

As discussed above, the usual approach to discriminate between conventional Elliot-Yafet and

Dyakonov-Perel relaxation mechanisms in metals and semiconductors is to scrutinize the scaling of

τs versus τp. Such procedure does not necessarily apply if the dominant processes that lead to mo-

mentum and scattering relaxation are not the same. For instance, in 2D membranes that respect mirror
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inversion symmetry, it was demonstrated that the carrier scattering by flexural phonons leads to fast spin

flips but not to momentum scattering and, therefore, the spin transport is decoupled from the carrier

mobility [23]. In the following discussion, we show that simple EY or DP scaling is also not suitable to

describe our findings.

Within our microscopic calculations, we analyze the time-dependence of the diffusion coefficient for

varying energies and ad-atom densities (Fig. 2c,d). For the lowest impurity density (0.05%, Fig. 2c),

regardless of the considered energy, D(E, t) is seen to increase in time with no sign of saturation within

our computational capability, indicating a ballistic-like regime for the considered timescales. Only for

the largest ad-atom density (8%) does D(t) eventually saturate at high enough energies (above 100

meV, D(t) → Dmax), allowing for the evaluation of the transport time using τp(E) = Dmax(E)/2v2(E)

(see dashed lines in Fig. 2b). A sharp increase of τp is seen when approaching the Dirac point, where τs

reaches its minimum value, with τs � τp. This energy dependence in τp is not unique to gold adatoms but

has also been observed for other types of disorder with a weak intervalley scattering contribution, such

as epoxide defects or long range scatterers [30]. As seen in Fig. 3b, τs ∼ 1/ρ, which does not allow us

to discriminate between EY and DP processes. However, the absolute values of τs and τp (with τs � τp)

are a clear manifestation of the breakdown of the typical scaling associated to both mechanisms. Even

the unconventional DP regime described in Ref.[8] for the case of τp/TΩ ≥ 1 where 1/τs ∼ ∆Ω (with

∆Ω an effective width of the distribution of precession frequencies) cannot account for the observation

that a weak variation in the local disorder affects the absolute values of τs (while ρ is unchanged) as

observed in Fig. 2. Here local disorder is monitored by the µ parameter. (Although µ belongs to the

TB parameterization of the adatom, we use it temporarily to increase local disorder.) In fact, its value

could slightly change when modifying the substrate screening or in presence of a more strongly bonded

adsorbant than Au. As a consequence of the above findings, the spin relaxation mechanism at play is

incompatible with both the EY and the DP mechanisms, a fact which could shed new light on the current

debate on the microscopic nature of spin relaxation in clean graphene [13, 21, 22].

We now further study the origin of the τs minimum at low energy and its unconventional scaling with

τp. Given that our simulations with the microscopic model give τs � τp, we further explore the low-

energy spin dynamics with an effective continuum model, in which the spin-orbit scattering is treated as

a homogeneous potential [19]. We solve the Dirac equation in the continuum model by using a 4× 4

effective Hamiltonian, taking into account the pseudospin degree of freedom
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h(~k) = h0(~k) + hR(~k) + hI(~k) (3)

While the hopping from three nearest neighbors h0(~k) = h̄vF (ζσxkx + σyky) ⊗ 1s dominates at high

energy and vanishes at the Dirac point (ζ = ±1 for K and K ′ valleys, ~σ are pseudospin Pauli matrices

and 1s is a 2 × 2 identity matrix), the intrinsic SOC hI(~k) = λ̄Iζ [σz ⊗ sz] and the Rashba interaction

hR(~k) = λ̄R (ζ [σx ⊗ sy]− [σy ⊗ sx]) play an extremely important role at the Dirac point, where the

coupling between spin and pseudospin becomes predominant, and governs the quantum dynamics and

dephasing of the wavepackets as described below.

Within the continuum model spin relaxation is achieved by introducing an ad-hoc energy broadening.

We use an initially z-polarized state for injection and consider only the K valley. A certain density

of Au impurities (inducing local spin-orbit coupling) is described by the effective spin-orbit coupling

λ̄R = 3ρVR and λ̄I = 3
√

3ρVI . Note that no additional local (static) scattering potential is introduced

here (µ = 0). By computing the spin dynamics of initially spin-polarized wavepackets, one also obtains

a spin relaxation effect defined by the two timescales TΩ and τs (see Supplementary Material).

It is instructive to contrast the results of the continuum model (Fig. 3a, inset) with those from the

microscopic model (Fig. 3a, main frame). Although the spin precession period TΩ obtained by both

models is identical (Fig. 3b) and the energy dependence of τs is similar, the absolute values of τs differ

substantially, especially in the high energy regime, where τs is clearly overestimated using the continuum

model. Such difference also becomes increasingly large upon decreasing the adatom density because τs

presents a different scaling with defect coverage (Fig.3b). This clearly evidences the importance of

disorder and illustrates the limits of a phenomenological approach using the continuum model for a

quantitative comparison with experimental data. Notwithstanding, the qualitative agreement between

both models (particularly for high coverage) and the weak momentum relaxation effects observed in the

microscopic model (as seen in the long τp) suggest some generality in the unconventional spin relaxation

observed near the Dirac point.

To further substantiate the origin of the spin relaxation, we scrutinize the spin and pseudospin dy-

namics of wavepackets using the continuum model. Pseudospin is intrinsically related to the graphene

sublattice degeneracy and, as long as valley mixing is negligible, pseudospin is aligned in the direction

of the momentum at high energy (h0(~k) dominates the Hamiltonian (3)). The Rashba spin-orbit term

hR(~k) entangles spin ~s with the lattice pseudospin ~σ, overriding the locking rule between pseudospin

and momentum since h0(~k) becomes vanishingly small in the vicinity of the Dirac point [7, 15].
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Figure 4 highlights the spin dynamics at different low (E = 0, E = −5 meV) and high (E = 130

meV) energies, which are representative of the underlying physics (note that no relaxation takes place

for fixed energy, thus the requirement of the ad-hoc broadening). At high energy, the spin precesses quite

regularly showing an oscillatory pattern of Sz(t) dominated by a single period TΩ = πh̄/λR =0.19 ps

(Fig. 4a). The spin precession occurs about an effective magnetic field BR dictated by the Rashba SOC

and pointing tangentially to the Fermi circle (as seen from the precession from blue to pink in middle

panels from t1 to t4). In contrast, the pseudospin 〈~σ(t)〉 points approximately in the same direction of

the momentum (evolving from green to orange). Its oscillatory pattern is driven by the Rashba period

TΩ together with a superimposed and more rapid oscillation (see Supplementary Material).

The situation at low energy is markedly different (Fig. 4b,c). We observe a highly unconventional

spin and pseudospin motion which is analyzed more closely for the spin and pseudospin z-components

at the Dirac point and at E = −5 meV. Here, the amplitude of the pseudospin oscillation is strongly

enhanced since pseudospin is no longer locked with momentum but starts to precess about an effective

pseudo-magnetic field. The pseudo-magnetic field strongly depends on the spin orientation, thus yielding

complex time-dependent dynamics of spin and pseudospin (see middle panels of Figure 4 corresponding

to 4b,c). Such an effect derives from the increased pseudospin precession period T ps
0 = πh̄/E (about

Bps
0 ), which decays significantly at low energy. Therefore 〈σi〉 can no longer be replaced by its time

average 〈σi〉, which in consequence also holds for the Rashba field BR. The time dependence of BR

with variability on a timescale similar to the Rashba period leads then to strong non-linear dynamics

of spin and pseudospin motion. As a result of such coupled dynamics, the spin precession cannot be

described by a single period TΩ as becomes evident from the complex Fourier spectra of Sz(t) in Fig.

4d. The time dependence ofBR includes also changes of its direction, thus impacting the pseudospin and

lifting the pseudospin-momentum locking. Both of these effects finally produce a joint spin/pseudospin

motion prohibiting the de-coupling of driving forces (B ps
0 , BR) that was possible at higher energies.

While the continuum model provides qualitative insight into the spin-pseudospin coupling and en-

tanglement of their corresponding wavefunctions, the microscopic model enables the quantification of

spin relaxation times for a given microscopic disorder. By scrutinizing the general form of the spin

polarization (Eq. 2), a simple understanding of the spin relaxation mechanism can be drawn. In the

microscopic model, the propagation of an initially spin-polarized wavepacket |ψ↑(t = 0)〉, is driven by

the evolution operator e−iHt/h̄|ψ↑(t = 0)〉, with H consisting of the clean graphene term plus the SOC

potential, which acts as a local (and random) perturbation on the electron spin. The time-dependence
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of the total spin polarization results from the accumulated dephasing along scattering trajectories de-

veloped under the evolution operator. As the distribution of scattering centers is random in space, all

different trajectories accumulate different phase shifts in their wavefunctions (each being the result of

local spin/pseudospin coupling and disorder potential). When phase shifts for up and down components

average out, the spin polarization of |ψ↑(t = 0)〉 is lost.

In conclusion, our spin transport study in chemically modified graphene has revealed a hitherto un-

known phenomenon related to the entangled dynamics of spin and pseudospin, induced by spin-orbit

coupling and leading to fast spin relaxation in a quasi-ballistic transport regime. Entanglement be-

tween spin and orbital degrees of freedom has been discussed for ballistic semiconducting nanowires

[31]. Here, faster spin relaxation develops when spin-pseudospin entanglement is maximized at the

Dirac point, where the momentum scattering time becomes increasingly large because disorder pre-

serves pseudospin symmetry. Such mechanism, occurring in clean graphene with long mean free paths,

has no equivalent in condensed matter and cannot be described by EY or DP. It is here described for gold

adsorbates, but should also be at play for other sources of local spin-orbit coupling (ripples, defects, etc.),

thus contributing to the understanding of spin transport in graphene devices [11–14, 17]. Finally, such

finding could open the path to control the spin by modifying the pseudospin or vice versa. For example,

spins could be manipulated by inducing pseudomagnetic fields by straining graphene. Such possibilities

suggest unprecedented approaches for the emergence of non-charge-based information processing and

computing, resulting in a new generation of active (CMOS-compatible) spintronic devices together with

non-volatile low-energy MRAM memories [32].

METHODS

Derivation of Eq.(2). The time dependence of the spin polarization of states in graphene πz bands can

be derived from the expectation value of the Pauli spin operator

〈~s(t)〉 = Tr [ρ(0)~s(t)] (4)

where the density matrix ρ(0) accounts for the initial spin polarization (out-of-plane) and ~s(t) =

e
iHt
h̄ ~se

−iHt
h̄ is the spin operator in Heisenberg representation. As any trace, it can be replaced by the

expectation value with random-phase states according to Tr [· · · ] → 〈ϕ′RP|· · ·|ϕ′RP〉 where the random-

phase state |ϕ′RP〉 = 1√
2M

∑M
j=1

 eiθj

eiθ
′
j

|j〉 is not an energy eigenstate at Fermi energy but samples the
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full spectrum. The trace in Eq. (4) (and equally the form with |ϕ′RP〉) includes all states of the system at

higher and lower energies, and not only those accessible in transport experiments (which are restricted to

the Fermi energy). Accordingly, Eq. (4) is not appropriate when aiming at a comparison to experiment

and another quantity needs to be computed as explained below. The quantum average of a given operator

Q at a selected energy E can be generally written as average over all eigenstates at this energy through

〈Q〉E =
1

N

N∑
i

〈ψiE|Q|ψiE〉 =
Tr
[∑N

i |ψiE〉〈ψiE|Q
]

N
(5)

where |ψiE〉 are N degenerate eigenstates of H at energy E which are obtained by Hamiltonian diago-

nalization. It is next straightforward to show that

〈Q〉E =
1

N

N∑
i

〈ψiE|Q|ψiE〉 =
Tr [δ(E −H)Q]

Tr [δ(E −H)]
=

Tr [δ(E −H)Q+Qδ(E −H)]

2Tr [δ(E −H)]
, (6)

where δ(E − H) is the continous projection operator, and the normalization with the number of states

N at energy E is replaced by the density of states Tr [δ(E −H)] at this energy. The last equality in

Eq.(6) yields a symmetric (Hermitian) form in the numerator suitable when Q does not commute with

the Hamiltonian. While the case of an average over unpolarized states in Eq.(6) yields

〈~s(t)〉E =
Tr [δ(E −H)~s(t)]

Tr [δ(E −H)]
=

Tr [δ(E −H)~s(t) + ~s(t)δ(E −H)]

2Tr [δ(E −H)]

=
〈ϕ′RP|δ(E −H)~s(t) + ~s(t)δ(E −H)|ϕ′RP〉

2〈ϕ′RP|δ(E −H)|ϕ′RP〉
,

(7)

the trace with spin-polarized initial random phase states |ϕRP 〉 = 1√
N

∑N
j=1

 eiθj

0

|j〉, which is of

interest here, yields

~S(E, t) =
〈Ψ(t)|~sδ(E −H) + δ(E −H)~s |Ψ(t)〉

2〈Ψ(t)|δ(E −H)|Ψ(t)〉
(8)

where the time evolution of the wavepackets |Ψ(t)〉 = e
−iHt

h̄ |Ψ(0)〉 ≡ e
−iHt

h̄ |ϕRP 〉 is obtained by solving

the time-dependent Schrödinger equation.

Real space implementation of the wavepacket quantum dynamics. The transport times are deduced

from the numerical analysis of the spreading of wavepacket through [30, 33]:

∆X2(E, t) =
Tr
[
δ(E −H)|X(t)−X(0)|2

]
Tr[δ(E −H)]

(9)
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A key quantity in the analysis of the transport properties is the diffusion coefficient: Dx(E, t) =

d
dt

∆X2(EF , t). Assuming the system to be isotropic for the in-plane x and y directions, then D(t) =

Dx(t) + Dy(t) = 2Dx(t). The diffusion coefficient contains all information about the semiclassical

effects of scattering leading to diffusive behavior, but also the quantum interference effects which lead

to localization effects. D(t) increases ballistically at short times, then saturates due to elastic scattering

events, and finally decays as a result of quantum interference effects (when significant). The elastic

mean free path is derived from the maximum of the diffusion coefficient: `e(E) = Dmax(E)/2v(E) ,

with v(E) being the carrier velocity and Dmax the maximum value of D(t). The momentum relaxation

can be extracted from elastic mean free path τp(E) = `e(E)/v(E).
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FIG. 1. Spin Dynamics in disordered graphene. (a) Ball-and-stick model of a random distribution of adatoms

on top of graphene (b) Top view of the gold adatom sitting on the center of an hexagon (c),(d) Time-dependent

projected spin polarization Sz(E, t) of charge carriers (symbols) initially prepared in an out-of-plane polarization

(at Dirac point (red curves) and at E = 150 meV (blue curves)). Analytical fits are given as solid lines (see text).

Parameters are VI = 0.007γ0, VR = 0.0165γ0, µ = 0.1γ0, ρ = 0.05% (c) and ρ = 8% (d).

FIG. 2. Spin relaxation times and transport mechanisms. Spin relaxation times (τs) for ρ = 0.05% (a) and

ρ = 8% (b). Black (red) solid symbols indicate τs for µ = 0.1γ0 (µ = 0.2γ0). TΩ vs. E is also shown (open

symbols). τp (dotted line in (b)) is shown over a wider energy range (top x-axis) to stress the divergence around

E = 0 (µ = 0.2γ0). Panels (c) and (d): Time dependent diffusion coefficient D(t) for ρ = 0.05% and ρ = 8%

with µ = 0.2γ0.
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FIG. 3. Spin relaxation times deduced from the continuum and microscopic models. (a) Spin relaxation times

(τs) for varying ρ between 0.05% and 8% extracted from the microscopic model (with µ = 0.1γ0). Inset: τs values

using the continuum model for ρ = 1% and 8% (filled symbols). A comparison with the microscopic model

(with µ = 0) is also given for ρ = 8% (open circles). (b) Scaling behavior of TΩ and τs versus 1/ρ. The TΩ

values obtained with the microscopic (resp. continuum) model are given by red diamonds (resp. red solid lines).

τs values for the microscopic model (blue squares) and the continuum model (black circles) are shown for two

selected energies E = 150meV (solid symbols) and E = 0 (open symbols). Solid lines are here guides to the eye.

FIG. 4. Spin and pseudospin dynamics in graphene with ρ = 8% of adatoms. Time dependence of spin-

polarization Sz (blue) and pseudospin polarization σz (green) in z projection for energies E = 130meV (a),

E = 0 (b), and E = −5 meV (c). Note that all quantities are normalized to their maximum value to better contrast

them in the same scale. Middle panels show the time evolution for both spin (from blue to pink) and pseudospin

(from green to orange). The snapshots are taken at different times from t1 to t4 sampling the shaded regions in (a),

(b), (c). (d) Fourier transform of Sz(t) plotted over oscillation period, and showing non-dispersive spectra at high

energy (between E =125 meV, 130 meV and 135 meV). Low-energy spectra (for E = −5 meV, 0 and 5 meV)

change strongly with energy (dispersive) showing a gradual reduction and blue shift of the original Rashba peak at

about 0.19 ps and the appearance of additional features.
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