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Artificial Neural Networks are computational network models inspired by signal processing in the brain.
These models have dramatically improved the performance of many learning tasks, including speech and
object recognition. However, today's computing hardware is inefficient at implementing neural networks,
in large part because much of it was designed for von Neumann computing schemes. Significant effort
has been made to develop electronic architectures tuned to implement artificial neural networks that
improve upon both computational speed and energy efficiency. Here, we propose a new architecture for
a fully-optical neural network that, using unique advantages of optics, promises a computational speed
enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude
in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our
architecture using a programmable nanophotonic processor.

Modern computers based on the von Neumann archi-
tecture are far more power-hungry and less effective than
their biological counterparts — central nervous systems —
for a wide range of tasks including perception, communi-
cation, learning, and decision making. With the increasing
data volume associated with processing big data, developing
computers that learn, combine, and analyze vast amounts
of information quickly and efficiently is becoming increas-
ingly important. For example, speech recognition software
(e.g., Apple’s Siri) is typically executed in the cloud since
these computations are too taxing for mobile hardware; real-
time image processing is an even more demanding task [1].
To address the shortcomings of von Neumann computing
architectures for neural networks, much recent work has
focused on increasing artificial neural network computing
speed and power efficiency by developing electronic architec-
tures (such as ASIC and FPGA chips) specifically tailored to
a task [2-5]. Recent demonstrations of electronic neuromor-
phic hardware architectures have reported improved compu-
tational performance [6]. Hybrid optical-electronic systems
that implement spike processing [7-9] and reservoir comput-
ing [10, 11] have also been investigated recently. However,
the computational speed and power efficiency achieved with
these hardware architectures are still limited by electronic
clock rates and ohmic losses.

Fully-optical neural networks offer a promising alternative
approach to microelectronic and hybrid optical-electronic
implementations. Linear transformations (and certain non-
linear transformations) can be performed at the speed of
light and detected at rates exceeding 100 GHz [12] in pho-
tonic networks, and in some cases, with minimal power con-
sumption [13]. For example, it is well known that a com-
mon lens performs Fourier transform without any power

consumption, and that certain matrix operations can also
be performed optically without consuming power. How-
ever, implementing such transformations with bulk optical
components (such as fibers and lenses) has been a major
barrier because of the need for phase stability and large
neuron counts. Integrated photonics solves this problem by
providing a scalable solution to large, phase-stable optical
transformations [14].

Here, we experimentally demonstrate on-chip, coherent,
optical neuromorphic computing on a vowel recognition
dataset. We achieve a level of accuracy comparable to a
conventional digital computer using a fully connected neu-
ral network algorithm. We show that, under certain con-
ditions, the optical neural network architecture can be at
least two orders of magnitude faster for forward propaga-
tion while providing linear scaling of neuron number versus
power consumption. This feature is enabled largely by the
fact that photonics can perform matrix multiplications, a
major part of nerual network algorithms, with extreme en-
ergy efficiency. While implementing scalable von Neumann
optical computers has proven challenging, artificial neural
networks implemented in optics can leverage inherent prop-
erties, such their weak requirements on nonlinearities, to
enable a practical, all-optical computing application. An op-
tical neural network architecture can be substantially more
energy efficient than conventional artificial neural networks
implemented on current electronic computers.

OPTICAL NEURAL NETWORK DEVICE ARCHITECTURE

An artificial neural network (ANN) [15] consists of a set of
input artificial neurons (represented as circles in Fig. 1(a))
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FIG. 1. General Architecture of Optical Neural Network a. General artificial neural network architecture composed of an input
layer, a number of hidden layers, and an output layer. b. Decomposition of the general neural network into individual layers. c.
Optical interference and nonlinearity units that compose each layer of the artificial neural network.

connected to at least one hidden layer and an output layer.
In each layer (depicted in Fig. 1(b)), information propa-
gates by linear combination (e.g. matrix multiplication) fol-
lowed by the application of a nonlinear activation function.
ANNSs can be trained by feeding training data into the input
layer and then computing the output by forward propaga-
tion; weighting parameters in each matrix are subsequently
optimized using back propagation [16].

The Optical Neural Network (ONN) architecture is de-
picted in Fig. 1 (b,c). As shown in Fig. 1(c), signals are
encoded in the amplitude of optical pulses propagating in
integrated photonic waveguides where they pass through an
optical interference unit (OIU) and finally an optical non-
linearity unit (ONU). Optical matrix multiplication is im-
plemented with an OIU and nonlinear activation is realized
with an ONU.

To realize an OIU that can implement any real-valued
matrix, we use the singular value decomposition (SVD) [17]
since a general, real-valued matrix (M) may be decomposed
as M = UXZV*, where U is an m X m unitary matrix, X is
a m X n diagonal matrix with non-negative real numbers on
the diagonal, and V* is the complex conjugate of the n x n
unitary matrix V. It was theoretically shown that any uni-
tary transformations U, V* can be implemented with optical
beamsplitters and phase shifters [18, 19]. Matrix multipli-

cation implemented in this manner consumes, in principle,
no power. The fact that a major part of ANN calculations
involves matrix products enables the extreme energy effi-
ciency of the ONN architecture presented here. Finally, &
can be implemented using optical attenuators; optical am-
plification materials such as semiconductors or dyes could
also be used [20].

The ONU can be implemented using optical nonlinearities
such as saturable absorption [21-23] and bistability [24-28]
that have been demonstrated seperately in photonic circuits.
For an input intensity I;,;, the optical output intensity is thus
given by a nonlinear function Iyt = f(L;;) [29].

EXPERIMENT

For an experimental demonstration of our ONN archi-
tecture, we implement a two layer, fully connected neural
network with the OIU shown in Fig. 2 and use it to per-
form vowel recognition. To prepare the training and testing
dataset, we use 360 datapoints that each consist of four log
area ratio coefficients [30] of one phoneme. The log area ra-
tio coefficients, or feature vectors, represent the power con-
tained in different logarithmically-spaced frequency bands
and are derived by computing the Fourier transform of the
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FIG. 2. Illustration of Optical Interference Unit a. Optical micrograph of an experimentally fabricated 22-mode on-chip optical
interference unit; the physical region where the optical neural network program exists is highlighted in grey. The system acts
as an optical field-programmable gate array-a test bed for optical experiments. b. Schematic illustration of the optical neural
network program demonstrated here which realizes both matrix multiplication and amplification fully optically. c. Schematic
illustration of a single phase shifter in the Mach-Zehnder Interferometer (MZI) and the transmission curve for tuning the internal

phase shifter of the MZI.

voice signal multiplied by a Hamming window function. The
360 datapoints were generated by 90 different people speak-
ing 4 different vowel phonemes [31]. We use half of these
datapoints for training and the remaining half to test the
performance of the trained ONN. We train the matrix pa-
rameters used in the ONN with the standard back propaga-
tion algorithm using stochastic gradient descent method [1],
on a conventional computer. Further details on the dataset
and backpropagation procedure are included in Supplemen-
tal Information Section 3.

The coherent ONN is realized with a programmable
nanophotonic processor [14] composed of an array of 56
Mach-Zehnder interferometers (MZls) and 213 phase shift-
ing elements, as shown in Fig. 2. Each interferometer
is composed of two evanescent-mode waveguide couplers
sandwiching an internal thermo-optic phase shifter [32] to
control the splitting ratio of the output modes, followed
by a second modulator to control the relative phase of the
output modes. By controlling the phase imparted by these

two phase shifters, these MZIs perform all rotations in the
SU(2) Lie group given a controlled incident phase on the
two electromagnetic input modes of the MZI. The nanopho-
tonic processor was fabricated in a silicon-on-insulator pho-
tonics platform with the OPSIS Foundry [33].

To experimentally realize arbitrary matrices by SVD, we
programmed an SU (4) core [18, 34] and a non-unitary diag-
onal matrix multiplication core (DMMC) into the nanopho-
tonic processor [14, 32], as shown in Fig. 2 (b). The SU(4)
core implements operators U and V by a Givens rotations al-
gorithm [18, 34] that decomposes unitary matrices into sets
of phase shifters and beam splitters, while the DMMC imple-
ments X by controlling the splitting ratios of the DMMC in-
terferometers to add or remove light from the optical mode
relative to a baseline amplitude. The measured fidelity for
the 720 OIU and DMMC cores used in the experiment was
99.8 £ 0.003 %; see methods for further detail.

In this analog computer, fidelity is limited by practical
non-idealities such as (1) finite precision with which an op-



tical phase can be set using our custom 240-channel voltage
supply with 16-bit voltage resolution per channel (2) pho-
todetection noise, and (3) thermal cross-talk between phase
shifters which effectively reduces the number of bits of res-
olution for setting phases. As with digital floating-point
computations, values are represented to some number of
bits of precision, the finite dynamic range and noise in the
optical intensities causes effective truncation errors. A de-
tailed analysis of finite precision and low-flux photon shot
noise is presented in Supplement Section 1.

In this proof-of-concept demonstration, we implement the
nonlinear transformation Ipy: = f(I;;,) in the electronic do-
main, by measuring optical mode output intensities on a
photodetector array and injecting signals I,,; into the next
stage of OIU. Here, f models the mathematical function
associated with a realistic saturable absorber (such as a
dye, semiconductor or graphene saturable absorber or sat-
urable amplifier) that could, in future implementations, be
directly integrated into waveguides after each OIU stage
of the circuit. For example, graphene layers integrated on
nanophotonic waveguides have already been demonstrated
as saturable absorbers [35]. Saturable absorption is modeled
as [21] (Supplement Section 2),

11In(T,u/To)

0Tslp = 2 1-T, ' (1)

where o is the absorption cross section, T is the radiative
lifetime of the absorber material, Tj is the initial transmit-
tance (a constant that only depends on the design of sat-
urable absorbers), Ij is the incident intensity, and T, is the
transmittance of the absorber. Given an input intensity I,
one can solve for Ty, (Iy) from Eqn. 1, and the output inten-
sity can be calculated as Iyt = Iy - Tru(Ip). A plot of the
saturable absorber's response function I, () is shown in
supplement Section 2.

After programming the nanophotonic processor to imple-
ment our ONN architecture, which consist of 4 layers of
OlUs with 4 neurons on each layer (which requires training
a total of 4 - 6 -2 = 48 phase shifter settings), we evaluated
it on the vowel recognition test set. Our ONN correctly
identified 138/180 cases (76.7%) [36] compared to a simu-
lated correctness of 165/180 (91.7%).

Since our ONN processes information in the analog sig-
nal domain, the architecture can be vulnerable to compu-
tational errors. Photodetection and phase encoding are the
dominant sources of error in the ONN presented here (as
discussed above). To understand the role of phase encoding
noise and photodection noise in our ONN hardware architec-
ture and to develop a model for its accuracy, we numerically
simulate the performance of our trained matrices with vary-
ing degrees of phase encoding noise (0g) and photodection
noise (0p) (detailed simulation steps can be found in meth-
ods section). The distribution of correctness percentage vs
0 and op is shown in Fig. 3 (a), which serves as a guide
to understanding experimental performance of the ONN.
Improvements to the control and readout hardware, includ-

ing implementing higher precision analog-to-digital convert-
ers in the photodetection array and voltage controller, are
practical avenues towards approaching the performance of
digital computers. Well-known techniques can be applied
to engineer the photodiode array to achieve significantly
higher dynamic range; for example, using logarithmic or
multi-stage gain amplifiers. Addressing these managable en-
gineering problems can further enhance the correctness per-
formance of the ONN to ultimately achieve correctness per-
centages approaching those of error-corrected digital com-
puters. In addition, ANN parameters trained by conven-
tional back propagation algorithm can become suboptimal
when encoding errors are encountered. In such a case, ro-
bust simulated annealing algorithms [37] can be used to
train ANN parameters which is error-tolerant, hence when
encoded in the ONN, will have better performance.

DISCUSSION

Processing big data at high speeds and with low power is
a central challenge in the field of computer science, and, in
fact, a majority of the power and processors in data centers
are spent on doing forward propagation (test-time predic-
tion). Furthermore, low forward propagation speeds limit
applications of ANNs in many fields including self-driving
cars which require high speed and parallel image recogni-
tion.

Our optical neural network architecture takes advantage
of high detection rate, high-sensitivity photon detectors to
enable high-speed, energy-efficient neural networks com-
pared to state-of-the-art electronic computer architectures.
Once all parameters have been trained and programmed on
the nanophotonic processor, forward propagation computing
is performed optically on a passive system. In our implemen-
tation, maintaining the phase modulator settings requires
some (small) power of ~10 mW per modulator on aver-
age. However, in future implementations, the phases could
be set with nonvolatile phase-change materials[38], which
would require no power to maintain. With this change,
the total power consumption is limited only by the phys-
ical size, the spectral bandwidth of dispersive components
(THz), and the photo-detection rate (100GHz). In principle,
such a system can be at least 2 orders of magnitude faster
than electronic neural networks (which are restricted at GHz
clock rate). Assuming our ONN has N nodes, implement-
ing m layers of NxN matrix multiplication and operating
at a typical 100 GHz photo-detection rate, the number of
operations per second of our system would be

R = 2m - N?- 10" operations/s

ONN power consumption during computation is domi-
nated by the optical power necessary to trigger an optical
nonlinearity and achieve a sufficiently high signal-to-noise
ratio (SNR) at the photodetectors (assuming shot-noise lim-
ited detection on n photons per pulse, SNR ~ /1/n). We
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FIG. 3. Vowel recognition. (a) Correct rate for vowel recognition problem with various phase encoding error (¢g) and photo-
detection error (0p), the definition of these two variables can be found in method section. The solid lines are the contours for
different level correctness percentage. (b-e) Simulated and experimental vowel recognition results for an error-free training matrix
where (b) vowel A was spoken, (c) vowel B was spoken, (d) vowel C was spoken, and (e) vowel D was spoken.

assume a saturable absorber threshold of p ~ 1 MW/cm? -
valid for many dyes, semiconductors, and graphene [21, 22].
Since the cross section for the waveguide is A = 0.2um
x0.5um, the total power needed to run the system is there-
fore estimated to be: P =~ N mW. Therefore, the energy
per operation of ONN will scale as R/P = 2m - N - 10 op-
erations/J (or P/R = % fJ/operation). Almost the same
energy performance and speed can be obtained if optical
bistability [24, 27, 39] is used instead of saturable absorption
as the enabling nonlinear phenomenon. Even for very small
neural networks, the above power efficiency is already at
least 3 orders of magnitude better than that in conventional
electronic CPUs and GPUs, where P/R = 1pJ/operation
(not including the power spent on data movement) [40],
while conventional image recognition tasks require tens of
millions of training parameters and thousands of neurons
(mN = 10°)[41]. These considerations suggest that the
optical NN approach may be tens of millions times more
efficient than conventional computers for standard problem
sizes. In fact, the larger the neural network, the bigger the
advantage of using optics is: this comes from the fact that
evaluating an N x N matrix in electronics requires O(N?)
energy, while in optics, it requires in principle no energy.
Further details on power efficiency calculation can be found
in the Supplementary information section 3.

ONNs enable new ways to train ANN parameters. On a
conventional computer, parameters are trained with back
propagation and gradient descent. However, for certain
ANNs where the effective number of parameters substan-
tially exceeds the number of distinct parameters (includ-

ing recurrent neural networks (RNN) and convolutional
neural networks(CNN)), training using back propagation
is notoriously inefficient. Specifically the recurrent nature
of RNNs gives them effectively an extremely deep ANN
(depth=sequence length), while in CNNs the same weight
parameters are used repeatedly in different parts of an im-
age for extracting features. Here we propose an alternative
approach to directly obtain the gradient of each distinct
parameter without back propagation, using forward propa-
gation on ONN and the finite difference method. It is well
known that the gradient for a particular distinct weight pa-
rameter AW;; in ANN can be obtained with two forward
propagation steps that compute J(W;;) and J(W;; + dj;),
I(Wij+5gi)*f(wij) (this
step only takes two operations). On a conve]ntional com-
puter, this scheme is not favored because forward propaga-
tion (evaluating J(W)) is computationally expensive. In
an ONN, each forward propagation step is computed in
constant time (limited by the photodetection rate which
can exceed 100 GHz [12]), with power consumption that
is only proportional to the number of neurons—making the
scheme above tractable. Furthermore, with this on-chip
training scheme, one can readily parametrize and train uni-
tary matrices—an approach known to be particularly useful
for deep neural networks [42]. As a proof of concept, we
carry out the unitary-matrix-on-chip training scheme for our
vowel recognition problem (see Supplementary Information
Section 4).

Regarding the physical size of the proposed ONN, cur-
rent technologies are capable of realizing ONNs exceeding

followed by the evaluation of AW;; =



the 1000 neuron regime — photonic circuits with up to 4096
optical components have been demonstrated [43]. 3-D pho-
tonic integration could enable even larger ONNs by adding
another spatial degree of freedom [44]. Furthermore, by
feeding in input signals (e.g. an image) via multiple patches
over time (instead of all at once) — an algorithm that has
been increasingly adopted by deep learning community [45]
— the ONN should be able to realize much bigger effec-
tive neural networks with relatively small number of physical
neurons.

CONCLUSION

The proposed architecture could be applied to other artifi-
cial neural network algorithms where matrix multiplications
and nonlinear activations are heavily used, including con-
volutional neural networks and recurrent neural networks.
Further, the superior forward propagation speed and power
efficiency of our ONN can potentially enable training the
neural network on the photonics chip directly, using only
forward propagation. Finally, it needs to be emphasized
that another major portion of power dissipation in current
NN architectures is associated with data movement—an out-
standing challenge that remains to be addressed. However,
recent dramatic improvements in optical interconnects using
integrated photonics technology has the potential to signif-
icantly reduce data-movement energy cost [46]. Further
integration of optical interconnects and optical computing
units need to be explored to realize the full advantage of
all-optical computing.

METHODS

Fidelity Analysis
We evaluated the performance of the SU(4) core with the
fidelity metric f = ; \/Piq; where p;,q; are experimental
and simulated normalized (Y;x; = 1 where x € {p,q})
optical intensity distributions across the waveguide modes,
respectively.

Simulation Method for Noise in ONN
We carry out the following steps to numerically simulate the
performance of our trained matrices with varying degrees of
phase encoding (0g) and detection (op) noise.

1. For each of the four trained 4 x 4 unitary matrices
U*, we calculate a set of {0F, ¢k} that encode the
matrix.

2. We add a set of random phase encoding errors,

{66, 6%} to the old calculated phases {0F, ¢t}
where we assume each (5917-‘ and (54);‘ is a random vari-
able sampled from a Gaussian distribution G(u,0)

with # = 0 and 0 = 0g. We obtain a new set of
perturbed phases {Gf/, 4>ff/} = {0k + 60F, pF + o9k 1.

3. We encode the four perturbed 4 x 4 unitary matrices
U based on the new perturbed phases {Hfl,cpf,}.

4. We carry out the forward propagation algorithm based
on the perturbed matrices U with our test data set.
During the forward propagation, every time when a
matrix multiplication is performed (let's say when we

_>

U

!/
compute 7 = ut. , we add a set of random

photo-detection errors Jv to the resulting T, where

we assume each entry of v is a random variable sam-
pled from a Gaussian distribution G(u, ) with 1 =0
and 0 = 0p - |7| We obtain the perturbed output

%
vector 7' = T + 60.

5. With the modified forward propagation scheme above,
we calculate the correctness percentage for the per-

turbed ONN.

6. Steps 2)-5) are repeated 50 times to obtain the dis-
tribution of correctness percentage for each phase en-
coding noise (0g) and photodetection noise (0p).
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