Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes

Abstract

As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond1,2. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complementary CNT ring oscillator.
Figure 2: CNT n-channel FETs with a high yield and oxygen scavenging in HfO2 gate dielectric.
Figure 3: Solvent-based CNT alignment and placement approach.
Figure 4: Ring oscillator electrical characterizations.

Similar content being viewed by others

References

  1. Franklin, A. D. et al. Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758–762 (2012).

    Article  CAS  Google Scholar 

  2. Cao, Q. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68–72 (2015).

    Article  CAS  Google Scholar 

  3. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  CAS  Google Scholar 

  4. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Article  CAS  Google Scholar 

  5. Geier, M. L. et al. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotech. 10, 944–948 (2015).

    Article  CAS  Google Scholar 

  6. Kocabas, C., Kang, S. J., Ozel, T., Shim, M. & Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 111, 17879–17886 (2007).

    Article  CAS  Google Scholar 

  7. Wang, C. A. et al. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Res. 3, 831–842 (2010).

    Article  CAS  Google Scholar 

  8. Patil, N. et al. Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes. IEEE Trans. Nanotechnol. 10, 744–750 (2011).

    Article  Google Scholar 

  9. Jin, S. H. et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat. Nanotech. 8, 347–355 (2013).

    Article  CAS  Google Scholar 

  10. Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

    Article  CAS  Google Scholar 

  11. Collins, P. G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).

    Article  CAS  Google Scholar 

  12. Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2005).

    Article  CAS  Google Scholar 

  13. Javey, A. et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5, 345–348 (2005).

    Article  CAS  Google Scholar 

  14. Franklin, A. D. et al. Carbon nanotube complementary wrap-gate transistors. Nano Lett. 13, 2490–2495 (2013).

    Article  CAS  Google Scholar 

  15. Tang, J. et al. Carbon nanotube complementary logic with low-temperature processed end-bonded metal contacts. IEDM Tech. Digest 5.1.1–5.1.4 (2016).

  16. Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Article  CAS  Google Scholar 

  17. Han, S.-J. et al. Carbon nanotube complementary logic based on erbium contacts and self-assembled high purity solution tubes. IEDM Tech. Digest 19.8.1–19.8.4 (2013).

  18. Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954–960 (2013).

    Article  CAS  Google Scholar 

  19. Sun, D.-m. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotech. 6, 156–161 (2011).

    Article  CAS  Google Scholar 

  20. Ha, M. et al. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4, 4388–4395 (2010).

    Article  CAS  Google Scholar 

  21. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  CAS  Google Scholar 

  22. Javey, A., Wang, Q., Ural, A., Li, Y. & Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002).

    Article  CAS  Google Scholar 

  23. Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).

    Article  CAS  Google Scholar 

  24. Shahrjerdi, D. et al. High device yield carbon nanotube NFETs for high-performance logic applications. IEDM Techn. Digest 23.3.1–23.3.4 (2011).

  25. Mistry, K. S., Larsen, B. A. & Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 7, 2231–2239 (2013).

    Article  CAS  Google Scholar 

  26. Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotech. 2, 640–646 (2007).

    Article  CAS  Google Scholar 

  27. Tulevski, G. S., Franklin, A. D. & Afzali, A. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 7, 2971–2976 (2013).

    Article  CAS  Google Scholar 

  28. Park, H. et al. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotech. 7, 787–791 (2012).

    Article  CAS  Google Scholar 

  29. Klinke, C., Hannon, J. B., Afzali, A. & Avouris, P. Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett. 6, 906–910 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bucchignano and S. Dawes for their technical assistance with electron-beam lithography, and H. Riel for management support.

Author information

Authors and Affiliations

Authors

Contributions

S.-J.H. conceived and designed the experiments. J.T., A.F., D.F. and S.-J.H. performed the device and circuit fabrication. B.K. and A.A. developed CNT placement process. G.T. prepared the purified CNT solution. S.O. and J.O. performed transmission electron microscopy and energy-dispersive X-ray spectroscopy analysis. K.J. and S.-J.H. performed ring oscillator measurements and analysed the data. S.-J.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Shu-Jen Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SJ., Tang, J., Kumar, B. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nature Nanotech 12, 861–865 (2017). https://doi.org/10.1038/nnano.2017.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing