Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions

Abstract

Molecular diodes operating in the tunnelling regime are intrinsically limited to a maximum rectification ratio R of 103. To enhance this rectification ratio to values comparable to those of conventional diodes (R ≥ 105) an alternative mechanism of rectification is therefore required. Here, we report a molecular diode with R = 6.3 × 105 based on self-assembled monolayers with Fc–C≡C–Fc (Fc, ferrocenyl) termini. The number of molecules (n(V)) involved in the charge transport changes with the polarity of the applied bias. More specifically, n(V) increases at forward bias because of an attractive electrostatic force between the positively charged Fc units and the negatively charged top electrode, but remains constant at reverse bias when the Fc units are neutral and interact weakly with the positively charged electrode. We successfully model this mechanism using molecular dynamics calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The junctions and mechanism of rectification.
Figure 2: Electrical characteristics of the junctions.
Figure 3: Temperature-dependent measurements of the junctions.
Figure 4: Bias-dependent change in contacts in the junctions.
Figure 5: Computed change in the SC15Fc-C≡C-Fc SAM structure as the junction is biased.

Similar content being viewed by others

References

  1. Benz, F. et al. Single-molecule optomechanics in ‘picocavities’. Science 354, 726–729 (2016).

    Article  CAS  Google Scholar 

  2. Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014).

    Article  CAS  Google Scholar 

  3. Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    Article  CAS  Google Scholar 

  4. Rincon-Garcia, L. et al. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat. Mater. 15, 289–293 (2016).

    Article  CAS  Google Scholar 

  5. Perrin, M. L. et al. Large negative differential conductance in single-molecule break junctions. Nat. Nanotech. 9, 830–834 (2014).

    Article  CAS  Google Scholar 

  6. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  7. Geddes, N. J., Sambles, J. R., Jarvis, D. J., Parker, W. G. & Sandman, D. J. Fabrication and investigation of asymmetric current–voltage characteristics of a metal/Langmuir–Blodgett monolayer/metal structure. Appl. Phys. Lett. 56, 1916–1918 (1990).

    Article  CAS  Google Scholar 

  8. Guliants, E. A., Ji, C. H., Song, Y. J. & Anderson, W. A. A 0.5-µm-thick polycrystalline silicon Schottky diode with rectification ratio of 106. Appl. Phys. Lett. 80, 1474–1476 (2002).

    Article  CAS  Google Scholar 

  9. Tung, R. T. Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R 35, 1–138 (2001).

    Article  Google Scholar 

  10. Beck, P. A., Nickel, J. H. & Hartwell, P. G. High current density in µc-Si PECVD diodes for low temperature applications. MRS Proceedings 808, A4.30 (2004).

    Article  Google Scholar 

  11. Prince, M. B. Diffused p–n junction silicon rectifiers. Bell Syst. Tech. J. 35, 661–684 (1956).

    Article  Google Scholar 

  12. Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotech. 10, 522–527 (2015).

    Article  CAS  Google Scholar 

  13. Yuan, L., Breuer, R., Jiang, L., Schmittel, M. & Nijhuis, C. A. A molecular diode with a statistically robust rectification ratio of three orders of magnitude. Nano. Lett. 15, 5506–5512 (2015).

    Article  CAS  Google Scholar 

  14. Perrin, M. L. et al. A gate-tunable single-molecule diode. Nanoscale 8, 8919–8923 (2016).

    Article  CAS  Google Scholar 

  15. Metzger, R. M. Unimolecular electronics. Chem. Rev. 115, 5056–5115 (2015).

    Article  CAS  Google Scholar 

  16. Kornilovitch, P. E., Bratkovsky, A. M. & Stanley Williams, R. Current rectification by molecules with asymmetric tunnelling barriers. Phys. Rev. B 66, 165436 (2002).

    Article  Google Scholar 

  17. Nijhuis, C. A., Reus, W. F. & Whitesides, G. M. Mechanism of rectification in tunnelling junctions based on molecules with asymmetric potential drops. J. Am. Chem. Soc. 132, 18386–18401 (2010).

    Article  CAS  Google Scholar 

  18. Kovalchuk, A. et al. Dipole-induced asymmetric conduction in tunnelling junctions comprising self-assembled monolayers. RSC Adv. 6, 69479–69483 (2016).

    Article  CAS  Google Scholar 

  19. Van Dyck, C. & Ratner, M. A. Molecular rectifiers: a new design based on asymmetric anchoring moieties. Nano Lett. 15, 1577–1584 (2015).

    Article  CAS  Google Scholar 

  20. Guo, C. et al. Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation. Nat. Chem. 8, 484–490 (2016).

    Article  CAS  Google Scholar 

  21. Garrigues, A. R. et al. A single-level tunnel model to account for electrical transport through single molecule- and self-assembled monolayer-based junctions. Sci. Rep. 6, 26517 (2016).

    Article  CAS  Google Scholar 

  22. Chiechi, R. C., Weiss, E. A., Dickey, M. D. & Whitesides, G. M. Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. Int. Ed. 47, 142–144 (2008).

    Article  CAS  Google Scholar 

  23. Thompson, D. & Nijhuis, C. A. Even the odd numbers help: failure modes of SAM-based tunnel junctions probed via odd–even effects revealed in synchrotrons and supercomputers. Acc. Chem. Res. 49, 2061–2069 (2016).

    Article  CAS  Google Scholar 

  24. Song, P., Yuan, L., Roemer, M., Jiang, L. & Nijhuis, C. A. Supramolecular vs electronic structure: the effect of the tilt angle of the active group in the performance of a molecular diode. J. Am. Chem. Soc. 138, 5769–5772 (2016).

    Article  CAS  Google Scholar 

  25. Nerngchamnong, N. et al. The role of van der Waals forces in the performance of molecular diodes. Nat. Nanotech. 8, 113–118 (2013).

    Article  CAS  Google Scholar 

  26. Fukagawa, H. et al. The role of the ionization potential in vacuum-level alignment at organic semiconductor interfaces. Adv. Mater. 19, 665–668 (2007).

    Article  CAS  Google Scholar 

  27. Fukagawa, H., Yamane, H., Kera, S., Okudaira, K. K. & Ueno, N. Experimental estimation of the electric dipole moment and polarizability of titanyl phthalocyanine using ultraviolet photoelectron spectroscopy. Phys. Rev. B 73, 041302 (2006).

    Article  Google Scholar 

  28. Cahen, D., Kahn, A. & Umbach, E. Energetics of molecular interfaces. Mater. Today 8, 32–41 (2005).

    Article  CAS  Google Scholar 

  29. Heimel, G., Romaner, L., Zojer, E. & Bredas, J.-L. The interface energetics of self-assembled monolayers on metals. Acc. Chem. Res. 41, 721–729 (2008).

    Article  CAS  Google Scholar 

  30. Nijhuis, C. A., Reus, W. F., Barber, J. R., Dickey, M. D. & Whitesides, G. M. Charge transport and rectification in arrays of SAM-based tunnelling junctions. Nano Lett. 10, 3611–3619 (2010).

    Article  CAS  Google Scholar 

  31. Garrigues, A. R., Wang, L., del Barco, E. & Nijhuis, C. A. Electrostatic control over temperature-dependent tunnelling across a single-molecule junction. Nat. Commun. 7, 11595 (2016).

    Article  CAS  Google Scholar 

  32. Du, W. et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photon. 10, 274–280 (2016).

    Article  CAS  Google Scholar 

  33. Nerngchamnong, N. et al. Nonideal electrochemical behavior of ferrocenyl-alkanethiolate SAMs maps the microenvironment of the redox unit. J. Phys. Chem. C 119, 21978–21991 (2015).

    Article  CAS  Google Scholar 

  34. Trasobares, J., Vuillaume, D., Théron, D. & Clément, N. A 17 GHz molecular rectifier. Nat. Commun. 7, 12850 (2016).

    Article  CAS  Google Scholar 

  35. Nijhuis, C. A., Reus, W. F. & Whitesides, G. M. Molecular rectification in metal−SAM−metal oxide−metal junctions. J. Am. Chem. Soc. 131, 17814–17827 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education (MOE) for supporting this research under award no. MOE2015-T2-1-050. The Prime Minister's Office, Singapore, under its Medium Sized Centre programme, is also acknowledged for supporting this research. The authors thank T. Wang for assisting in the analysis of the optical data and L. Jiang for providing the Au and Ag substrates. D.T. acknowledges Science Foundation Ireland (SFI) for financial support under grant no. 15/CDA/3491, and for provision of computing resources at the SFI/Higher Education Authority Irish Centre for High-End Computing (ICHEC). E.d.B. acknowledges support from the National Science Foundation (grants numbers NSF-ECCS 1402990 and 1518863). The authors thank Y. Xiaojiang for assisting at the SINS beamline at SSLS under NUS core support C-380-003-003-001.

Author information

Authors and Affiliations

Authors

Contributions

X.C. and L.Y. performed electrical characterization and analysed the data. M.R. synthesized the compounds. L.Y. performed the XPS, ultraviolet photoelecton spectroscopy and near-edge X-ray fine structure spectroscopy measurements. W.D. carried out the optical measurement. D.T. computed the molecular dynamics. E.d.B. modelled the junction data. C.A.N. conceptualized and led the study. All authors discussed the results, contributed to writing the paper and commented on the manuscript.

Corresponding author

Correspondence to Christian A. Nijhuis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4044 kb)

Supplementary information

Supplementary Movie (MOV 1862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Roemer, M., Yuan, L. et al. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nature Nanotech 12, 797–803 (2017). https://doi.org/10.1038/nnano.2017.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing