Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microsupercapacitors as miniaturized energy-storage components for on-chip electronics

Abstract

The push towards miniaturized electronics calls for the development of miniaturized energy-storage components that can enable sustained, autonomous operation of electronic devices for applications such as wearable gadgets and wireless sensor networks. Microsupercapacitors have been targeted as a viable route for this purpose, because, though storing less energy than microbatteries, they can be charged and discharged much more rapidly and have an almost unlimited lifetime. In this Review, we discuss the progress and the prospects of integrated miniaturized supercapacitors. In particular, we discuss their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity. This is obtainable, for example, through self-supported nanostructured electrodes. We also critically evaluate the performance metrics currently used in the literature to characterize microsupercapacitors and offer general guidelines to benchmark performances towards prospective applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the configurations of microsupercapacitors.
Figure 2: Typical microfabrication processes for the realization of planar on-chip microsupercapacitors.
Figure 3: Schematic representation of an interdigitated microsupercapacitor with an internal 3D architecture.
Figure 4: Comparison of the performances of bulky and 2D thin-film microsupercapacitor electrodes reported over the past years.
Figure 5: Influence of the time constant τ on the power characteristics of microsupercapacitors.

Similar content being viewed by others

References

  1. Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 24, 280–285 (2012).

    CAS  Google Scholar 

  2. Koomey, J. G., Matthews, H. S. & Williams, E. Smart everything: will intelligent systems reduce resource use? Annu. Rev. Environ. Resour. 38, 311–343 (2013).

    Google Scholar 

  3. Wang, Z. L. & Wu, W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 2–24 (2012).

    Google Scholar 

  4. Oudenhoven, J. F. M., Baggetto, L. & Notten, P. H. L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011).

    CAS  Google Scholar 

  5. Kyeremateng, N. A. Self-organised TiO2 nanotubes for 2D or 3D Li-ion microbatteries. ChemElectroChem 1, 1442–1467 (2014).

    CAS  Google Scholar 

  6. Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, 1999).

    Google Scholar 

  7. Brousse, T., Bélanger, D. & Long, J. W. To be or not to be pseudocapacitive. J. Electrochem. Soc. 162, A5185–A5189 (2015).

    CAS  Google Scholar 

  8. Wu, Z.-S., Feng, X. & Cheng, H.-M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl Sci. Rev. 1, 277–292 (2014).

    CAS  Google Scholar 

  9. Beidaghi, M. & Gogotsi, Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014).

    CAS  Google Scholar 

  10. Cima, M. J. Next-generation wearable electronics. Nat. Biotechnol. 32, 642–643 (2014).

    CAS  Google Scholar 

  11. Hong, S. & Myung, S. A flexible approach to mobility. Nat. Nanotech. 2, 207–208 (2007).

    CAS  Google Scholar 

  12. Yuan, L. et al. Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51, 4934–4938 (2012).

    CAS  Google Scholar 

  13. Jost, K., Dion, G. & Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A 2, 10776–10787 (2014).

    CAS  Google Scholar 

  14. Zhang, Y.-Z. et al. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44, 5181–5199 (2015).

    CAS  Google Scholar 

  15. Yoon, Y. S., Cho, W. I., Lim, J. H. & Choi, D. J. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films. J. Power Sources 101, 126–129 (2001).

    CAS  Google Scholar 

  16. Lim, J. H., Choi, D. J., Kim, H. K., Cho, W. I. & Yoon, Y. S. Thin film supercapacitors using a sputtered RuO2 electrode. J. Electrochem. Soc. 148, A275–A278 (2001).

    CAS  Google Scholar 

  17. Kim, H. K., Cho, S. H., Ok, Y. W., Seong, T. Y. & Yoon, Y. S. All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes. J. Vac. Sci. Technol. B 21, 949–952 (2003).

    CAS  Google Scholar 

  18. Sung, J. H., Kim, S. J. & Lee, K. H. Fabrication of all-solid-state electrochemical microcapacitors. J. Power Sources 133, 312–319 (2004).

    CAS  Google Scholar 

  19. Sung, J. H., Kim, S. J., Jeong, S. H., Kim, E. H. & Lee, K. H. Flexible micro-supercapacitors. J. Power Sources 162, 1467–1470 (2006).

    CAS  Google Scholar 

  20. Brandt, A., Pohlmann, S., Varzi, A., Balducci, A. & Passerini, S. Ionic liquids in supercapacitors. MRS Bull. 38, 554–559 (2013).

    CAS  Google Scholar 

  21. Gao, H. & Lian, K. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv. 4, 33091–33113 (2014).

    CAS  Google Scholar 

  22. Le Bideau, J., Viau, L. & Vioux, A. Ionogels, ionic liquids based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011).

    CAS  Google Scholar 

  23. Le Bideau, J., Ducros, J.-B., Soudan, P. & Guyomard, D. Solid-state electrode materials with ionic-liquid properties for energy storage: the lithium solid-state ionic-liquid concept. Adv. Funct. Mater. 21, 4073–4078 (2011).

    CAS  Google Scholar 

  24. El-Kady, M. F. & Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2012).

    Google Scholar 

  25. Wang, S., Hsia, B., Carraro, C. & Maboudian, R. High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J. Mater. Chem. A 2, 7997–8002 (2014).

    CAS  Google Scholar 

  26. Brachet, M., Brousse, T. & Le Bideau, J. All solid-state symmetrical activated carbon electrochemical double layer capacitors designed with ionogel electrolyte. ECS Electrochem. Lett. 3, A112–A115 (2014).

    CAS  Google Scholar 

  27. Brachet, M. et al. Solder-reflow resistant solid-state micro-supercapacitors based on ionogels. J. Mater. Chem. A 4, 11835–11843 (2016).

    CAS  Google Scholar 

  28. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    CAS  Google Scholar 

  29. Gogotsi, Y. et al. Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2, 591–594 (2003).

    CAS  Google Scholar 

  30. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    CAS  Google Scholar 

  31. Chmiola, J., Largeot, C., Taberna, P. L., Simon, P. & Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010).

    CAS  Google Scholar 

  32. Huang, P. et al. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 225, 240–244 (2013).

    CAS  Google Scholar 

  33. Huang, P. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016).

    CAS  Google Scholar 

  34. Makino, S., Yamauci, Y. & Sugimoto, W. Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors. J. Power Sources 227, 153–160 (2013).

    CAS  Google Scholar 

  35. Dinh, T. M., Armstrong, K., Guay, D. & Pech, D. High-resolution on-chip supercapacitors with ultra-high scan rate ability. J. Mater. Chem. A 2, 7170–7174 (2014).

    CAS  Google Scholar 

  36. Ho, C. C. et al. Dispenser printed electrochemical capacitors for power management of millimeter scale lithium ion polymer microbatteries for wireless sensors. In 6th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications 219–222 (PowerMEMS, 2006).

    Google Scholar 

  37. Pech, D. et al. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 195, 1266–1269 (2010).

    CAS  Google Scholar 

  38. Durou, H. et al. Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy. Microsyst. Technol. 18, 467–473 (2012).

    CAS  Google Scholar 

  39. Liu, Z. et al. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28, 2217–2222 (2016).

    CAS  Google Scholar 

  40. Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotech. 5, 651–654 (2010).

    CAS  Google Scholar 

  41. Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).

    CAS  Google Scholar 

  42. In, J. B. et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 83, 144–151 (2015).

    CAS  Google Scholar 

  43. Huang, H.-C., Chung, C.-J., Hsieh, C.-T., Kuo, P.-L. & Teng, H. Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy 21, 90–105 (2016).

    CAS  Google Scholar 

  44. Gao, W. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotech. 6, 496–500 (2011).

    CAS  Google Scholar 

  45. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    CAS  Google Scholar 

  46. Shen, C., Wang, X., Zhang, W. & Kang, F. Direct prototyping of patterned nanoporous carbon: a route from materials to on-chip devices. Sci. Rep. 3, 2294 (2013).

    Google Scholar 

  47. Wei, L., Nitta, N. & Yushin, G. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices. ACS Nano 7, 6498–6506 (2013).

    CAS  Google Scholar 

  48. Wang, X. et al. Manganese oxide micro-supercapacitors with ultra-high areal capacitance. Nanoscale 5, 4119–4122 (2013).

    Google Scholar 

  49. Lang, X., Hirata, A., Fujita, T. & Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotech. 6, 232–236 (2011).

    CAS  Google Scholar 

  50. Tian, X. et al. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv. Mater. 27, 7476–7482 (2015).

    CAS  Google Scholar 

  51. Han, J. et al. On-chip micro-pseudocapacitors for ultrahigh energy and power delivery. Adv. Sci. 2, 1500067 (2015).

    Google Scholar 

  52. Li, L. et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28, 838–845 (2015).

    Google Scholar 

  53. Sung, J.-H., Kim, S.-J. & Lee, K.-H. Fabrication of microsupercapacitors using conducting polymer microelectrodes. J. Power Sources 124, 343–350 (2003).

    CAS  Google Scholar 

  54. Wu, Z.-S. et al. Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27, 4054–4061 (2015).

    CAS  Google Scholar 

  55. Kurra, N., Hota, M. K. & Alshareef, H. N. Conducting polymer micro-supercapacitors for flexible energy storage and ac line-filtering. Nano Energy 13, 500–508 (2015).

    CAS  Google Scholar 

  56. Esashi, M. Wafer level packaging of MEMS. J. Micromech. Microeng. 18, 073001 (2008).

    Google Scholar 

  57. Marquardt, K. et al. Development of near hermetic silicon/glass cavities for packaging of integrated lithium micro batteries. Microsyst. Technol. 16, 1119–1129 (2010).

    CAS  Google Scholar 

  58. Marquardt, K., Hahn, R., Luger, T. & Reichl, H. Assembly and hermetic encapsulation of wafer level secondary batteries. In 19th IEEE International Conference on Micro Electro Mechanical Systems 954–957 (IEEE, 2006).

    Google Scholar 

  59. Laszczyk, K. U. et al. Lithographically integrated microsupercapacitors for compact, high performance, and designable energy circuits. Adv. Energy Mater. 5, 1500741 (2015).

    Google Scholar 

  60. Shen, C., Wang, X., Zhang, W. & Kang, F. A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials. J. Power Sources 196, 10465–10471 (2011).

    CAS  Google Scholar 

  61. Pu, J. et al. High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite. Nanotechnology 27, 045701 (2016).

    Google Scholar 

  62. Long, J. W., Dunn, B., Rolison, D. R. & White, H. S. Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004).

    CAS  Google Scholar 

  63. Dinh, T. M. et al. Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288–294 (2014).

    CAS  Google Scholar 

  64. Ferris, A., Garbarino, S., Guay, D. & Pech, D. 3D RuO2 microsupercapacitors with remarkable areal energy. Adv. Mater. 27, 6625–6629 (2015).

    CAS  Google Scholar 

  65. Dubal, D. P. et al. 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li-doped ionic liquid. Sci. Rep. 5, 09771 (2015).

    CAS  Google Scholar 

  66. Ponrouch, A., Garbarino, S., Bertin, E. & Guay, D. Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications. J. Power Sources 221, 228–231 (2013).

    CAS  Google Scholar 

  67. Beidaghi, M. & Wang, C. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 56, 9508–9514 (2011).

    CAS  Google Scholar 

  68. Wang, X., Yin, Y., Li, X. & You, Z. Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures. J. Power Sources 252, 64–72 (2014).

    Google Scholar 

  69. Eustache, E., Douard, C., Retoux, R., Lethien, C. & Brousse, T. MnO2 thin films on 3D scaffold: microsupercapacitor electrodes competing with “bulk” carbon electrodes. Adv. Energy Mater. 5, 1500680 (2015).

    Google Scholar 

  70. Liu, Y. et al. Enhanced electrochemical performance of hybrid SnO2@MOx (M = Ni, Co, Mn) core–shell nanostructures grown on flexible carbon fibers as the supercapacitor electrode materials. J. Mater. Chem. A 3, 3676–3682 (2015).

    CAS  Google Scholar 

  71. El-Kady, M. F. et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl Acad. Sci. USA 112, 4233–4238 (2015).

    CAS  Google Scholar 

  72. He, S. et al. Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage. J. Power Sources 299, 408–416 (2015).

    CAS  Google Scholar 

  73. Pikul, J. H., Zhang, H. G., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).

    Google Scholar 

  74. Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    CAS  Google Scholar 

  75. Lobo, D. E., Banerjee, P. C., Easton, C. D. & Majumder, M. Miniaturized supercapacitors: focused ion beam reduced graphene oxide supercapacitors with enhanced performance metrics. Adv. Energy Mater. 5, 1500665 (2015).

    Google Scholar 

  76. Berton, N. et al. Wide-voltage window silicon nanowire electrodes for micro-supercapacitors via electrochemical surface oxidation in ionic liquid electrolyte. Electrochem. Commun. 41, 31–34 (2014).

    CAS  Google Scholar 

  77. Aradilla, D. et al. SiNWs-based electrochemical double layer micro-supercapacitors with wide voltage window (4V) and long cycling stability using a protic ionic liquid electrolyte. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 015004 (2015).

    CAS  Google Scholar 

  78. Huang, P. et al. On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 36, 53–56 (2013).

    CAS  Google Scholar 

  79. Chang, C.-H. et al. High-temperature all solid-state microsupercapacitors based on SiC nanowire electrode and YSZ electrolyte. ACS Appl. Mater. Interfaces 7, 26658–26665 (2015).

    CAS  Google Scholar 

  80. Conway, B. E., Pell, W. G. & Liu, T. C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J. Power Sources 65, 53–59 (1997).

    CAS  Google Scholar 

  81. Beidaghi, M. & Wang, C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22, 4501–4510 (2012).

    CAS  Google Scholar 

  82. Lin, J. et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013).

    Google Scholar 

  83. Wu, Z. S., Parvez, K., Feng, X. & Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013).

    Google Scholar 

  84. Shen, B., Lang, J., Guo, R., Zhang, X. & Yan, X. Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes. ACS Appl. Mater. Interfaces 7, 25378–25389 (2015).

    CAS  Google Scholar 

  85. Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotech. 7, 11–23 (2012).

    CAS  Google Scholar 

  86. McDonough, J. K. & Gogotsi, Y. Carbon onions: synthesis and electrochemical applications. Electrochem. Soc. Interface 22, 61–66 (2013).

    CAS  Google Scholar 

  87. Zeiger, M., Jäckel, N., Mochalin, V. & Presser, V. Carbon onions for electrochemical energy storage. J. Mater. Chem. A 4, 3172–3196 (2016).

    CAS  Google Scholar 

  88. Russ, B. E. & Talbot, J. B. An analysis of the binder formation in electrophoretic deposition. J. Electrochem. Soc. 145, 1253–1256 (1998).

    CAS  Google Scholar 

  89. Ji, J. et al. Advanced graphene-based binder-free electrodes for high-performance energy storage. Adv. Mater. 27, 5264–5279 (2015).

    CAS  Google Scholar 

  90. Pech, D. et al. Influence of the configuration in planar interdigitated electrochemical micro-capacitors. J. Power Sources 230, 230–235 (2013).

    CAS  Google Scholar 

  91. Ghosh, A., Le, V. T., Bae, J. J. & Lee, Y. H. TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor. Sci. Rep. 3, 2939 (2013).

    Google Scholar 

  92. Liu, W. W., Feng, Y. Q., Yan, X. B., Chen, J. T. & Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23, 4111–4122 (2013).

    CAS  Google Scholar 

  93. Gao, F., Wolfer, M. T. & Nebel, C. E. Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon 80, 833–840 (2014).

    CAS  Google Scholar 

  94. Wu, Z.-S., Parvez, K., Feng, X. & Müllen, K. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J. Mater. Chem. A 2, 8288–8293 (2014).

    CAS  Google Scholar 

  95. Yang, P. et al. Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures. Adv. Sci. 3, 1500299 (2016).

    Google Scholar 

  96. Thissandier, F., Gentile, P., Brousse, T., Bidan, G. & Sadki, S. Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees? J. Power Sources 269, 740–746 (2014).

    CAS  Google Scholar 

  97. Pell, W. G. & Conway, B. E. Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge. J. Power Sources 96, 57–67 (2001).

    CAS  Google Scholar 

  98. Liu, W., Lu, C., Wang, X., Tay, R. J. & Tay, B. K. High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. ACS Nano 9, 1528–1542 (2015).

    CAS  Google Scholar 

  99. Miller, J. R., Outlaw, R. A. & Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010).

    CAS  Google Scholar 

  100. Sheng, K., Sun, Y., Li, C., Yuan, W. & Shi, G. Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2, 247 (2012).

    Google Scholar 

  101. Wu, Z. et al. Alternating current line-filtering based on electrochemical capacitor utilizing template-patterned graphene. Sci. Rep. 5, 10983 (2015).

    Google Scholar 

  102. Wu, Z. S., Liu, Z., Parvez, K., Feng, X. & Müllen, K. Ultrathin printable graphene supercapacitors with ac line-filtering performance. Adv. Mater. 27, 3669–3675 (2015).

    CAS  Google Scholar 

  103. Zhang, M. et al. An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for ac line-filtering. Energy Environ. Sci. 9, 2005–2010 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyeremateng, N., Brousse, T. & Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotech 12, 7–15 (2017). https://doi.org/10.1038/nnano.2016.196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing