Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks

Abstract

The chemical behaviour of molecules can be significantly modified by confinement to volumes comparable to the dimensions of the molecules. Although such confined spaces can be found in various nanostructured materials, such as zeolites, nanoporous organic frameworks and colloidal nanocrystal assemblies, the slow diffusion of molecules in and out of these materials has greatly hampered studying the effect of confinement on their physicochemical properties. Here, we show that this diffusion limitation can be overcome by reversibly creating and destroying confined environments by means of ultraviolet and visible light irradiation. We use colloidal nanocrystals functionalized with light-responsive ligands that readily self-assemble and trap various molecules from the surrounding bulk solution. Once trapped, these molecules can undergo chemical reactions with increased rates and with stereoselectivities significantly different from those in bulk solution. Illumination with visible light disassembles these nanoflasks, releasing the product in solution and thereby establishes a catalytic cycle. These dynamic nanoflasks can be useful for studying chemical reactivities in confined environments and for synthesizing molecules that are otherwise hard to achieve in bulk solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible self-assembly of azobenzene-functionalized nanoparticles and nanoflasks formation.
Figure 2: Trapping of water within self-assembling nanoflasks.
Figure 3: Quantifying and visualizing the trapping process.
Figure 4: Accelerating chemical reactions in dynamically self-assembling nanoflasks.

Similar content being viewed by others

References

  1. Poole, L. B., Karplus, P. A. & Claiborne, A. Protein sulfenic acids in redox signaling. Annu. Rev. Pharmacol. Toxicol. 44, 325–347 (2004).

    Article  CAS  Google Scholar 

  2. Tripp, B. C., Smith, K. & Ferry, J. G. Carbonic anhydrase: new insights for an ancient enzyme. J. Biol. Chem. 276, 48615–48618 (2001).

    Article  CAS  Google Scholar 

  3. Forman, H. J. & Fridovic, I. Superoxide dismutase: a comparison of rate constants. Arch. Biochem. Biophys. 158, 396–400 (1973).

    Article  CAS  Google Scholar 

  4. Hong, Y. J. & Tantillo, D. J. Consequences of conformational preorganization in sesquiterpene biosynthesis: theoretical studies on the formation of the bisabolene, curcumene, acoradiene, zizaene, cedrene, duprezianene, and sesquithuriferol sesquiterpenes. J. Am. Chem. Soc. 131, 7999–8015 (2009).

    Article  CAS  Google Scholar 

  5. Yasumoto, T. & Murata, M. Marine toxins. Chem. Rev. 93, 1897–1909 (1993).

    Article  CAS  Google Scholar 

  6. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  7. Faivre, D. & Schuler, D. Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–4898 (2008).

    Article  CAS  Google Scholar 

  8. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822 (2001).

    Article  CAS  Google Scholar 

  9. Li, X. Y. & Liu, D. R. DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  10. Kanan, M. W., Rozenman, M. M., Sakurai, K., Snyder, T. M. & Liu, D. R. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature 431, 545–549 (2004).

    Article  CAS  Google Scholar 

  11. Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    Article  CAS  Google Scholar 

  12. Yoshizawa, M., Kusukawa, T., Fujita, M. & Yamaguchi, K. Ship-in-a-bottle synthesis of otherwise labile cyclic trimers of siloxanes in a self-assembled coordination cage. J. Am. Chem. Soc. 122, 6311–6312 (2000).

    Article  CAS  Google Scholar 

  13. Yoshizawa, M., Tamura, M. & Fujita, M. Diels–Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).

    Article  CAS  Google Scholar 

  14. Sastre, G. & Corma, A. The confinement effect in zeolites. J. Mol. Catal. A 305, 3–7 (2009).

    Article  CAS  Google Scholar 

  15. Chu, Y. Y., Han, B., Zheng, A. M. & Deng, F. Influence of acid strength and confinement effect on the ethylene dimerization reaction over solid acid catalysts: a theoretical calculation study. J. Phys. Chem. C 116, 12687–12695 (2012).

    Article  CAS  Google Scholar 

  16. Kundu, P. K., Olsen, G. L., Kiss, V. & Klajn, R. Nanoporous frameworks exhibiting multiple stimuli responsiveness. Nature Commun. 5, 3588 (2014).

    Article  Google Scholar 

  17. Wei, Y.-S. et al. Coordination templated [2+2+2] cyclotrimerization in a porous coordination framework. Nature Commun. 6, 8348 (2015).

    Article  CAS  Google Scholar 

  18. Fallah-Araghi, A. et al. Enhanced chemical synthesis at soft interfaces: a universal reaction–adsorption mechanism in microcompartments. Phys. Rev. Lett. 112, 028301 (2014).

    Article  Google Scholar 

  19. Yang, D. Y. et al. Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Sci. Rep. 3, 3165 (2013).

    Article  Google Scholar 

  20. Komisarski, M., Osornio, Y. M., Siegel, J. S. & Landau, E. M. Tailored host–guest lipidic cubic phases: a protocell model exhibiting nucleic acid recognition. Chem. Eur. J. 19, 1262–1267 (2013).

    Article  CAS  Google Scholar 

  21. Crosby, J. et al. Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer–nucleotide coacervate droplets. Chem. Commun. 48, 11832–11834 (2012).

    Article  CAS  Google Scholar 

  22. Shevchenko, E. V., Talapin, D. V., Murray, C. B. & O'Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 128, 3620–3637 (2006).

    Article  CAS  Google Scholar 

  23. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  24. Sanchez-Iglesias, A. et al. Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano 6, 11059–11065 (2012).

    Article  CAS  Google Scholar 

  25. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  26. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  27. Klajn, R., Wesson, P. J., Bishop, K. J. M. & Grzybowski, B. A. Writing self-erasing images using metastable nanoparticle ‘inks’. Angew. Chem. Int. Ed. 48, 7035–7039 (2009).

    Article  CAS  Google Scholar 

  28. Lee, J.-W. & Klajn, R. Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2 . Chem. Commun. 51, 2036–2039 (2015).

    Article  CAS  Google Scholar 

  29. Das, S. et al. Dual-responsive nanoparticles and their self-assembly. Adv. Mater. 25, 422–426 (2013).

    Article  CAS  Google Scholar 

  30. Chovnik, O., Balgley, R., Goldman, J. R. & Klajn, R. Dynamically self-assembling carriers enable guiding of diamagnetic particles by weak magnets. J. Am. Chem. Soc. 134, 19564–19567 (2012).

    Article  CAS  Google Scholar 

  31. Manna, A. et al. Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem. Mater. 15, 20–28 (2003).

    Article  CAS  Google Scholar 

  32. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    Article  CAS  Google Scholar 

  33. Biedermann, F., Uzunova, V. D., Scherman, O. A., Nau, W. M. & De Simone, A. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012).

    Article  CAS  Google Scholar 

  34. Biedermann, F., Vendruscolo, M., Scherman, O. A., De Simone, A. & Nau, W. M. Cucurbit[8]uril and blue-box: high-energy water release overwhelms electrostatic interactions. J. Am. Chem. Soc. 135, 14879–14888 (2013).

    Article  CAS  Google Scholar 

  35. Biedermann, F., Nau, W. M. & Schneider, H.-J. The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014).

    Article  CAS  Google Scholar 

  36. Grego, A., Muller, A. & Weinstock, I. A. Stepwise-resolved thermodynamics of hydrophobic self-assembly. Angew. Chem. Int. Ed. 52, 8358–8362 (2013).

    Article  CAS  Google Scholar 

  37. Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle N(C8H17)4Au25(SCH2CH2Ph)18 . J. Am. Chem. Soc. 130, 3754–3755 (2008).

    Article  CAS  Google Scholar 

  38. Zhu, M., Lanni, E., Garg, N., Bier, M. E. & Jin, R. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 130, 1138–1139 (2008).

    Article  CAS  Google Scholar 

  39. Kondo, M., Takemoto, M., Matsuda, T., Fukae, R. & Kawatsuki, N. Photoinduced change in mechanical properties of anthracene polymers containing flexible side chains. Bull. Chem. Soc. Jpn 83, 1333–1337 (2010).

    Article  CAS  Google Scholar 

  40. Xu, J. F., Chen, Y. Z., Wu, L. Z., Tung, C. H. & Yang, Q. Z. Dynamic covalent bond based on reversible photo 4+4 cycloaddition of anthracene for construction of double-dynamic polymers. Org. Lett. 15, 6148–6151 (2013).

    Article  CAS  Google Scholar 

  41. Bouas-Laurent, H., Castellan, A., Desvergne, J. P. & Lapouyade, R. Photodimerization of anthracenes in fluid solution: structural aspects. Chem. Soc. Rev. 29, 43–55 (2000).

    Article  CAS  Google Scholar 

  42. Jain, P. K., Huang, X. H., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  43. Harris, N., Ford, M. J. & Cortie, M. B. Optimization of plasmonic heating by gold nanospheres and nanoshells. J. Phys. Chem. B 110, 10701–10707 (2006).

    Article  CAS  Google Scholar 

  44. Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

    Article  CAS  Google Scholar 

  45. Fox, M. A. & Olive, S. Photo-oxidation of anthracene on atmospheric particulate matter. Science 205, 582–583 (1979).

    Article  CAS  Google Scholar 

  46. Alonso, R., Jimenez, M. C. & Miranda, M. A. Stereodifferentiation in the compartmentalized photooxidation of a protein-bound anthracene. Org. Lett. 13, 3860–3863 (2011).

    Article  CAS  Google Scholar 

  47. Alonso, R., Yamaji, M., Jimenez, M. C. & Miranda, M. A. Enhanced photostability of the anthracene chromophore in aqueous medium upon protein encapsulation. J. Phys. Chem. B 114, 11363–11369 (2010).

    Article  CAS  Google Scholar 

  48. Tung, C. H. & Guan, J. Q. Regioselectivity in the photocycloaddition of 9-substituted anthracenes incorporated within nafion membranes. J. Org. Chem. 63, 5857–5862 (1998).

    Article  CAS  Google Scholar 

  49. Arumugam, S., Vutukuri, D. R., Thayumanavan, S. & Ramamurthy, V. A styrene based water soluble polymer as a reaction medium for photodimerization of aromatic hydrocarbons in water. J. Photochem. Photobiol. A 185, 168–171 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (grant no. 336080; R.K.), the NSF Division of Materials Research (grant no. 1309765; P.K.) and the American Chemical Society Petroleum Research Fund (grant no. 53062-ND6; P.K.). The authors thank R. Neumann and his group for the use of their gas chromatograph and T. Zdobinsky for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

R.K. conceived the project. H.Z., T.U., M.S., K.K., D.M., P.K.K. and J.-W.L. performed the experiments and analysed the data. P.K. and S.S. performed the computer simulations. R.K. wrote the paper.

Corresponding author

Correspondence to Rafal Klajn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Sen, S., Udayabhaskararao, T. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotech 11, 82–88 (2016). https://doi.org/10.1038/nnano.2015.256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing