Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Charge transport in strongly coupled quantum dot solids

Abstract

The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Semiconductor QDs.
Figure 2: Spherical QD self-assembly.
Figure 3: Shape-engineered QD self-assembly.
Figure 4: Ligand exchange and stripping to control coupling in QD solids.
Figure 5: Doping QDs and QD solids.
Figure 6: Electrical and optical measurements of high-mobility transport in group II–VI, III–V and IV–VI QD solids.
Figure 7: QD solid devices.

Similar content being viewed by others

References

  1. Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    CAS  Google Scholar 

  2. Ekimov, A. I., Efros, A. L. & Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 56, 921–924 (1985).

    CAS  Google Scholar 

  3. Kagan, C., Murray, C., Nirmal, M. & Bawendi, M. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 (1996).

    CAS  Google Scholar 

  4. Leatherdale, C. A. et al. Photoconductivity in CdSe quantum dot solids. Phys. Rev. B 62, 2669–2680 (2000).

    CAS  Google Scholar 

  5. Yu, D., Wang, C. & Guyot-Sionnest, P. n-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

    CAS  Google Scholar 

  6. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    CAS  Google Scholar 

  7. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech. 6, 348–352 (2011).

    CAS  Google Scholar 

  8. Choi, J. H. et al. Bandlike transport in strongly coupled and doped quantum dot solids: A route to high-performance thin-film electronics. Nano Lett. 12, 2631–2638 (2012).

    CAS  Google Scholar 

  9. Liu, W., Lee, J.-S. & Talapin, D. V. III-V nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 135, 1349–1357 (2013).

    CAS  Google Scholar 

  10. Oh, S. J. et al. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance. ACS Nano 7, 2413–2421 (2013).

    CAS  Google Scholar 

  11. Liu, Y. et al. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V−1 s−1. Nano Lett. 13, 1578–1587 (2013).

    CAS  Google Scholar 

  12. Talgorn, E. et al. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. Nature Nanotech. 6, 733–739 (2011).

    CAS  Google Scholar 

  13. Shabaev, A., Efros, A. L. & Efros, A. L. Dark and photo-conductivity in ordered array of nanocrystals. Nano Lett. 13, 5454–5461 (2013).

    CAS  Google Scholar 

  14. Liu, Y. et al. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 10, 1960–1969 (2010).

    CAS  Google Scholar 

  15. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  16. Peng, Z. A. & Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001).

    CAS  Google Scholar 

  17. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater. 3, 891–895 (2004).

    CAS  Google Scholar 

  18. Yang, Y. A., Wu, H., Williams, K. R. & Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. Int. Ed. 44, 6712–6715 (2005).

    CAS  Google Scholar 

  19. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    CAS  Google Scholar 

  20. Micic, O. I., Curtis, C. J., Jones, K. M., Sprague, J. R. & Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98, 4966–4969 (1994).

    CAS  Google Scholar 

  21. Murray, C. B. et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–56 (2001).

    CAS  Google Scholar 

  22. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    CAS  Google Scholar 

  23. Liu, W., Chang, A. Y., Schaller, R. D. & Talapin, D. V. Colloidal InSb nanocrystals. J. Am. Chem. Soc. 134, 20258–20261 (2012).

    CAS  Google Scholar 

  24. Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    CAS  Google Scholar 

  25. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    CAS  Google Scholar 

  26. Casavola, M. et al. Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry. Chem. Mater. 24, 294–302 (2012).

    CAS  Google Scholar 

  27. Liljeroth, P. et al. Variable orbital coupling in a two-dimensional quantum-dot solid probed on a local scale. Phys. Rev. Lett. 97, 096803 (2006).

    Google Scholar 

  28. Koh, W.-K., Saudari, S. R., Fafarman, A. T., Kagan, C. R. & Murray, C. B. Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Lett. 11, 4764–4767 (2011).

    CAS  Google Scholar 

  29. Kortan, A. R. et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327–1332 (1990).

    CAS  Google Scholar 

  30. Danek, M., Jensen, K. F., Murray, C. B. & Bawendi, M. G. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem. Mater. 8, 173–180 (1996).

    CAS  Google Scholar 

  31. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    CAS  Google Scholar 

  32. Bals, S. et al. Three-dimensional atomic imaging of colloidal core-shell nanocrystals. Nano Lett. 11, 3420–3424 (2011).

    CAS  Google Scholar 

  33. Nan, W. et al. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 134, 19685–19693 (2012).

    CAS  Google Scholar 

  34. Li, J. J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

    CAS  Google Scholar 

  35. Wang, X. et al. Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009).

    CAS  Google Scholar 

  36. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    CAS  Google Scholar 

  37. Lambert, K., Geyter, B., De Moreels, I. & Hens, Z. PbTe|CdTe core|shell particles by cation exchange, a HR-TEM study. Chem. Mater. 21, 778–780 (2009).

    CAS  Google Scholar 

  38. Deka, S. et al. Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via 'one-pot' cation exchange and seeded growth. Nano Lett. 10, 3770–3776 (2010).

    CAS  Google Scholar 

  39. Urban, J. J., Talapin, D. V., Shevchenko, E. V. & Murray, C. B. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J. Am. Chem. Soc. 128, 3248–3255 (2006).

    CAS  Google Scholar 

  40. Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F. & Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8, 6363–6371 (2014).

    CAS  Google Scholar 

  41. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    CAS  Google Scholar 

  42. Gaulding, E. A. et al. Deposition of wafer-scale single-component and binary nanocrystal superlattice thin films via dip-coating. Adv. Mater. 27, 2846–2851 (2015).

    CAS  Google Scholar 

  43. Bodnarchuk, M. I. et al. Large-area ordered superlattices from magnetic wustite/cobalt ferrite core/shell nanocrystals by doctor blade casting. ACS Nano 4, 423–431 (2010).

    CAS  Google Scholar 

  44. Diroll, B. T., Greybush, N. J., Kagan, C. R. & Murray, C. B. Smectic nanorod superlattices assembled on liquid subphases: Structure, orientation, defects, and optical polarization. Chem. Mater. 27, 2998–3008 (2015).

    CAS  Google Scholar 

  45. Baker, J. L., Widmer-Cooper, A., Toney, M. F., Geissler, P. L. & Alivisatos, A. P. Device-scale perpendicular alignment of colloidal nanorods. Nano Lett. 10, 195–201 (2010).

    CAS  Google Scholar 

  46. Qi, W. et al. Ordered two-dimensional superstructures of colloidal octapod-shaped nanocrystals on flat substrates. Nano Lett. 12, 5299–5303 (2012).

    CAS  Google Scholar 

  47. Evers, W. H. et al. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett. 13, 2317–2323 (2013).

    CAS  Google Scholar 

  48. Owen, J. S., Park, J., Trudeau, P.-E. & Alivisatos, A. P. Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces. J. Am. Chem. Soc. 130, 12279–12281 (2008).

    CAS  Google Scholar 

  49. Fritzinger, B., Capek, R. K., Lambert, K., Martins, J. C. & Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 132, 10195–10201 (2010).

    CAS  Google Scholar 

  50. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    CAS  Google Scholar 

  51. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    CAS  Google Scholar 

  52. Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    CAS  Google Scholar 

  53. Dirin, D. N. et al. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 136, 6550–6553 (2014).

    CAS  Google Scholar 

  54. Nag, A. et al. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011).

    CAS  Google Scholar 

  55. Ning, Z. et al. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 24, 6295–6299 (2012).

    CAS  Google Scholar 

  56. Fafarman, A. T. et al. Thiocyanate capped nanocrystal colloids: A vibrational reporter of surface chemistry and a solution-based route to enhanced coupling in nanocrystal solids. J. Am. Chem. Soc. 133, 15753–15761 (2011).

    CAS  Google Scholar 

  57. Baumgardner, W. J., Whitham, K. & Hanrath, T. Confined-but-connected quantum solids via controlled ligand displacement. Nano Lett. 13, 3225–3231 (2013).

    CAS  Google Scholar 

  58. Hassinen, A. et al. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc. 134, 20705–20712 (2012).

    CAS  Google Scholar 

  59. Anderson, N. C., Hendricks, M. P., Choi, J. J. & Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536–18548 (2013).

    CAS  Google Scholar 

  60. Rosen, E. L. et al. Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein's salt. Angew. Chem. Int. Ed. 51, 684–689 (2012).

    CAS  Google Scholar 

  61. Ridley, B. A. All-inorganic field effect transistors fabricated by printing. Science 286, 746–749 (1999).

    CAS  Google Scholar 

  62. Stolle, C. J. et al. Multiexciton solar cells of CuInSe2 nanocrystals. J. Phys. Chem. Lett. 5, 304–309 (2014).

    CAS  Google Scholar 

  63. Brown, P. R. et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863–5872 (2014).

    CAS  Google Scholar 

  64. Andres, R. P. et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996).

    CAS  Google Scholar 

  65. Boneschanscher, M. P. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    CAS  Google Scholar 

  66. Oh, S. J. et al. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 14, 1559–1566 (2014).

    CAS  Google Scholar 

  67. Zhang, H. et al. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Lett. 11, 5356–5361 (2011).

    CAS  Google Scholar 

  68. Choi, J.-H. et al. In situ repair of high-performance, flexible nanocrystal electronics for large-area fabrication and operation in air. ACS Nano 7, 8275–8283 (2013).

    CAS  Google Scholar 

  69. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

    CAS  Google Scholar 

  70. Mocatta, D. et al. Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81 (2011).

    CAS  Google Scholar 

  71. Liu, H. et al. Systematic optimization of quantum junction colloidal quantum dot solar cells. Appl. Phys. Lett. 101, 151112 (2012).

    Google Scholar 

  72. Stavrinadis, A. et al. Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nature Commun. 4, 2981 (2013).

    Google Scholar 

  73. Sahu, A. et al. Electronic impurity doping in CdSe nanocrystals. Nano Lett. 12, 2587–2594 (2012).

    CAS  Google Scholar 

  74. Ott, F. D., Spiegel, L. L., Norris, D. J. & Erwin, S. C. Microscopic theory of cation exchange in CdSe nanocrystals. Phys. Rev. Lett. 113, 156803 (2014).

    Google Scholar 

  75. Oh, S. J., Kim, D. K. & Kagan, C. R. Remote doping and Schottky barrier formation in strongly quantum confined single PbSe nanowire field-effect transistors. ACS Nano 6, 4328–4334 (2012).

    CAS  Google Scholar 

  76. Voznyy, O. et al. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano 6, 8448–8455 (2012).

    CAS  Google Scholar 

  77. Luther, J. M. & Pietryga, J. M. Stoichiometry control in quantum dots: A viable analog to impurity doping of bulk materials. ACS Nano 7, 1845–1849 (2013).

    CAS  Google Scholar 

  78. Kim, D., Kim, D.-H., Lee, J.-H. & Grossman, J. C. Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 110, 196802 (2013).

    Google Scholar 

  79. Kim, D. K., Lai, Y., Vemulkar, T. R. & Kagan, C. R. Flexible, low voltage and low hysteresis PbSe nanowire field-effect transistors. ACS Nano 5, 10074–10083 (2011).

    CAS  Google Scholar 

  80. Leschkies, K. S., Kang, M. S., Aydil, E. S. & Norris, D. J. Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films. J. Phys. Chem. C 114, 9988–9996 (2010).

    CAS  Google Scholar 

  81. Moreels, I., Fritzinger, B., Martins, J. C. & Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 130, 15081–15086 (2008).

    CAS  Google Scholar 

  82. Kirmani, A. R. et al. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance. Adv. Mater. 26, 4717–4723 (2014).

    CAS  Google Scholar 

  83. Goodwin, E. D. et al. Effects of post-synthesis processing on CdSe nanocrystals and their solids: Correlation between surface chemistry and optoelectronic properties. J. Phys. Chem. C 118, 27097–27105 (2014).

    CAS  Google Scholar 

  84. Engel, J. H. & Alivisatos, A. P. Postsynthetic doping control of nanocrystal thin films: Balancing space charge to improve photovoltaic efficiency. Chem. Mater. 26, 153–162 (2014).

    CAS  Google Scholar 

  85. Zhao, N. et al. Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4, 3743–3752 (2010).

    CAS  Google Scholar 

  86. Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).

    CAS  Google Scholar 

  87. Esaki, L. & Chang, L. L. Semiconductor superfine structures by computer-controlled molecular beam epitaxy. Thin Solid Films 36, 285–298 (1976).

    CAS  Google Scholar 

  88. Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001).

    CAS  Google Scholar 

  89. Schedelbeck, G. Coupled quantum dots fabricated by cleaved edge overgrowth: From artificial atoms to molecules. Science 278, 1792–1795 (1997).

    CAS  Google Scholar 

  90. Lazarenkova, O. L. & Balandin, A. A. Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509–5515 (2001).

    CAS  Google Scholar 

  91. Kalesaki, E., Evers, W. H., Allan, G., Vanmaekelbergh, D. & Delerue, C. Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two. Phys. Rev. B 88, 115431 (2013).

    Google Scholar 

  92. Artemyev, M. V. et al. Optical properties of dense and diluted ensembles of semiconductor quantum dots. Phys. Stat. Sol. 224, 393–396 (2001).

    CAS  Google Scholar 

  93. MicÏicÏ, O. I., Ahrenkiel, S. P. & Nozik, A. J. Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films. Appl. Phys. Lett. 78, 4022–4024 (2001).

    Google Scholar 

  94. Vossmeyer, T. et al. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98, 7665–7673 (1994).

    CAS  Google Scholar 

  95. Steiner, D., Aharoni, A., Banin, U. & Millo, O. Level structure of InAs quantum dots in two-dimensional assemblies. Nano Lett. 6, 2201–2205 (2006).

    CAS  Google Scholar 

  96. Nagpal, P. & Klimov, V. I. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nature Commun. 2, 486 (2011).

    Google Scholar 

  97. Yang, J. & Wise, F. W. Effects of disorder on electronic properties of nanocrystal assemblies. J. Phys. Chem. C 119, 3338–3347 (2015).

    CAS  Google Scholar 

  98. Skinner, B., Chen, T. & Shklovskii, B. I. Theory of hopping conduction in arrays of doped semiconductor nanocrystals. Phys. Rev. B 85, 205316 (2012).

    Google Scholar 

  99. Oh, S. J. et al. Engineering charge injection and charge transport for high performance PbSe nanocrystal thin film devices and circuits. Nano Lett. 14, 6210–6216 (2014).

    CAS  Google Scholar 

  100. Jang, J., Liu, W., Son, J. S. & Talapin, D. V. Temperature-dependent Hall and field-effect mobility in strongly coupled all-inorganic nanocrystal arrays. Nano Lett. 14, 653–662 (2014).

    CAS  Google Scholar 

  101. Guyot-Sionnest, P. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3, 1169–1175 (2012).

    CAS  Google Scholar 

  102. Crisp, R. W., Schrauben, J. N., Beard, M. C., Luther, J. M. & Johnson, J. C. Coherent exciton delocalization in strongly coupled quantum dot arrays. Nano Lett. 13, 4862–4869 (2013).

    CAS  Google Scholar 

  103. Turk, M. E. et al. Gate-induced carrier delocalization in quantum dot field effect transistors. Nano Lett. 14, 5948–5952 (2014).

    CAS  Google Scholar 

  104. Remacle, F. & Levine, R. D. Quantum dots as chemical building blocks: Elementary theoretical considerations. ChemPhysChem 2, 20–36 (2001).

    CAS  Google Scholar 

  105. Chung, D. S. et al. Low voltage, hysteresis free, and high mobility transistors from all-inorganic colloidal nanocrystals. Nano Lett. 12, 1813–1820 (2012).

    CAS  Google Scholar 

  106. Kim, D. K., Lai, Y., Diroll, B. T., Murray, C. B. & Kagan, C. R. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nature Commun. 3, 1216 (2012).

    Google Scholar 

  107. Lai, Y. et al. Low-frequency (1/f) noise in nanocrystal field-effect transistors. ACS Nano 8, 9664–9672 (2014).

    CAS  Google Scholar 

  108. Liu, H., Lhuillier, E. & Guyot-Sionnest, P. 1/f noise in semiconductor and metal nanocrystal solids. J. Appl. Phys. 115, 154309 (2014).

    Google Scholar 

  109. Sakanoue, T. & Sirringhaus, H. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nature Mater. 9, 736–740 (2010).

    CAS  Google Scholar 

  110. Ha, M. et al. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4, 4388–4395 (2010).

    CAS  Google Scholar 

  111. Dolzhnikov, D. S. et al. Composition-matched molecular 'solders' for semiconductors. Science 347, 425–428 (2015).

    CAS  Google Scholar 

  112. Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    CAS  Google Scholar 

  113. Cho, K.-S. et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nature Photon. 3, 341–345 (2009).

    CAS  Google Scholar 

  114. Sun, L. et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotech. 7, 369–373 (2012).

    CAS  Google Scholar 

  115. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    CAS  Google Scholar 

  116. Talapin, D. V. & Steckel, J. Quantum dot light-emitting devices. MRS Bull. 38, 685–691 (2013).

    CAS  Google Scholar 

  117. Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nature Mater. 12, 410–415 (2013).

    CAS  Google Scholar 

  118. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    CAS  Google Scholar 

  119. Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).

    CAS  Google Scholar 

  120. Nozik, A. Quantum dot solar cells. Physica E 14, 115–120 (2002).

    CAS  Google Scholar 

  121. Johnston, K. W. et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).

    Google Scholar 

  122. Kramer, I. J. & Sargent, E. H. The architecture of colloidal quantum dot solar cells: Materials to devices. Chem. Rev. 114, 863–882 (2014).

    CAS  Google Scholar 

  123. Nozik, A. J. et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010).

    CAS  Google Scholar 

  124. Ma, W. et al. Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5, 8140–8147 (2011).

    CAS  Google Scholar 

  125. Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Mater. 13, 796–801 (2014).

    CAS  Google Scholar 

  126. Labelle, A. J. et al. Colloidal quantum dot solar cells exploiting hierarchical structuring. Nano Lett. 15, 1101–1108 (2015).

    CAS  Google Scholar 

  127. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 44). Prog. Photovoltaics Res. Appl. 22, 701–710 (2014).

    Google Scholar 

  128. Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    CAS  Google Scholar 

  129. Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    CAS  Google Scholar 

  130. Konstantatos, G. & Sargent, E. H. Solution-processed quantum dot photodetectors. Proc. IEEE 97, 1666–1683 (2009).

    CAS  Google Scholar 

  131. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    CAS  Google Scholar 

  132. Yakunin, S. et al. High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals. ACS Nano 8, 12883–12894 (2014).

    CAS  Google Scholar 

  133. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotech. 4, 40–44 (2009).

    CAS  Google Scholar 

  134. Keuleyan, S. E., Guyot-Sionnest, P., Delerue, C. & Allan, G. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 8, 8676–8682 (2014).

    CAS  Google Scholar 

  135. Chen, M. et al. Fast, air-stable infrared photodetectors based on spray-deposited aqueous HgTe quantum dots. Adv. Funct. Mater. 24, 53–59 (2014).

    CAS  Google Scholar 

  136. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    CAS  Google Scholar 

  137. Diedenhofen, S. L., Kufer, D., Lasanta, T. & Konstantatos, G. Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses. Light Sci. Appl. 4, e234 (2015).

    CAS  Google Scholar 

  138. Yang, D., Lu, C., Yin, H. & Herman, I. P. Thermoelectric performance of PbSe quantum dot films. Nanoscale 5, 7290–7296 (2013).

    CAS  Google Scholar 

  139. Ibáñez, M. et al. Core–shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe-PbS thermoelectric properties. ACS Nano 7, 2573–2586 (2013).

    Google Scholar 

  140. Son, J. S. et al. All-inorganic nanocrystals as a glue for BiSbTe grains: Design of interfaces in mesostructured thermoelectric materials. Angew. Chem. Int. Ed. 126, 7596–7600 (2014).

    Google Scholar 

  141. Ko, D.-K. & Murray, C. B. Probing the Fermi energy level and the density of states distribution in PbTe nanocrystal (quantum dot) solids by temperature-dependent thermopower measurements. ACS Nano 5, 4810–4817 (2011).

    CAS  Google Scholar 

  142. Ko, D.-K., Kang, Y. & Murray, C. B. Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites. Nano Lett. 11, 2841–2844 (2011).

    CAS  Google Scholar 

  143. Nika, D., Pokatilov, E., Shao, Q. & Balandin, A. Charge-carrier states and light absorption in ordered quantum dot superlattices. Phys. Rev. B 76, 125417 (2007).

    Google Scholar 

  144. Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    CAS  Google Scholar 

  145. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the US Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-SC0002158, for primary support of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cherie R. Kagan or Christopher B. Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagan, C., Murray, C. Charge transport in strongly coupled quantum dot solids. Nature Nanotech 10, 1013–1026 (2015). https://doi.org/10.1038/nnano.2015.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing