Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large negative differential conductance in single-molecule break junctions

Abstract

Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks1. To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport is mainly determined by the alignment of the molecular orbital levels with respect to the Fermi energies of the electrodes2 and the electronic coupling with those electrodes3,4. Particularly appealing exceptions include molecules in which two moieties are twisted with respect to each other5,6 and molecules in which quantum interference effects are possible7,8. Here, we report the experimental observation of pronounced negative differential conductance in the current–voltage characteristics of a single molecule in break junctions. The molecule of interest consists of two conjugated arms, connected by a non-conjugated segment, resulting in two coupled sites. A voltage applied across the molecule pulls the energy of the sites apart, suppressing resonant transport through the molecule and causing the current to decrease. A generic theoretical model based on a two-site molecular orbital structure captures the experimental findings well, as confirmed by density functional theory with non-equilibrium Green's functions calculations that include the effect of the bias. Our results point towards a conductance mechanism mediated by the intrinsic molecular orbitals alignment of the molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the experiment.
Figure 2: NDC effect: mechanical tunability and stability.
Figure 3: I–V breaking series on AH and AC.
Figure 4: Two-site model.

Similar content being viewed by others

References

  1. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  2. Moth-Poulsen, K. & Bjornholm, T. Molecular electronics with single molecules in solid-state devices. Nature Nanotech. 4, 551–556 (2009).

    Article  CAS  Google Scholar 

  3. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    Article  CAS  Google Scholar 

  4. Diez-Perez, I. et al. Controlling single-molecule conductance through lateral coupling of π-orbitals. Nature Nanotech. 6, 226–231 (2011).

    Article  CAS  Google Scholar 

  5. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  Google Scholar 

  6. Mishchenko, A. et al. Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 10, 156–163 (2010).

    Article  CAS  Google Scholar 

  7. Guedon, C. M. et al. Observation of quantum interference in molecular charge transport. Nature Nanotech. 7, 304–308 (2012).

    Article  Google Scholar 

  8. Vazquez, H. et al. Probing the conductance superposition law in single-molecule circuits with parallel paths. Nature Nanotech. 7, 663–667 (2012).

    Article  CAS  Google Scholar 

  9. Xue, Y. et al. Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Phys. Rev. B 59, R7852–R7855 (1999).

    Article  CAS  Google Scholar 

  10. Guisinger, N. P., Greene, M. E., Basu, R., Baluch, A. S. & Hersam, M. C. Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4, 55–59 (2004).

    Article  CAS  Google Scholar 

  11. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  CAS  Google Scholar 

  12. Tu, X., Mikaelian, G. & Ho, W. Controlling single-molecule negative differential resistance in a double-barrier tunnel junction. Phys. Rev. Lett. 100, 126807 (2008).

    Article  CAS  Google Scholar 

  13. Gaudioso, J., Lauhon, L. J. & Ho, W. Vibrationally mediated negative differential resistance in a single molecule. Phys. Rev. Lett. 85, 1918–1921 (2000).

    Article  CAS  Google Scholar 

  14. Kratochvilova, I. et al. Room temperature negative differential resistance in molecular nanowires. J. Mater. Chem. 12, 2927–2930 (2002).

    Article  CAS  Google Scholar 

  15. Mentovich, E. D. et al. Multipeak negative-differential-resistance molecular device. Small 4, 55–58 (2008).

    Article  CAS  Google Scholar 

  16. He, J. & Lindsay, S. On the mechanism of negative differential resistance in ferrocenylundecanethiol self-assembled monolayers. J. Am. Chem. Soc. 127, 11932–11933 (2005).

    Article  CAS  Google Scholar 

  17. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on–off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  CAS  Google Scholar 

  18. Chen, J. et al. Negative differential resistance effect in organic devices based on an anthracene derivative. Appl. Phys. Lett. 89, 083514 (2006).

    Article  Google Scholar 

  19. Fracasso, D., Valkenier, H., Hummelen, J. C., Solomon, G. C. & Chiechi, R. C. Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (eGaIn) top-contacts. J. Am. Chem. Soc. 133, 9556–9563 (2011).

    Article  CAS  Google Scholar 

  20. Van Ruitenbeek, J. M. et al. Adjustable nanofabricated atomic size contacts. Rev. Sci. Instrum. 67, 108–111 (1996).

    Article  CAS  Google Scholar 

  21. Kergueris, C. et al. Electron transport through a metal–molecule–metal junction. Phys. Rev. B 59, 12505–12513 (1999).

    Article  CAS  Google Scholar 

  22. Simmons, J. G. Generalized formula for electric tunnel effect between similar electrodes separated by a thin insulting film. J. Appl. Phys. 34, 1793 (1963).

    Article  Google Scholar 

  23. Perrin, M. L. et al. Large tunable image-charge effects in single-molecule junctions. Nature Nanotech. 8, 282–287 (2013).

    Article  CAS  Google Scholar 

  24. Hong, W. et al. An MCBJ case study: the influence of π-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2, 699–713 (2011).

    Article  Google Scholar 

  25. Te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  CAS  Google Scholar 

  26. Fonseca Guerra, C., Snijders, J. G., te Velde, G. & Baerends, E. J. Towards an order-N DFT method. Theor. Chem. Acc. 99, 391–403 (1998).

    Google Scholar 

  27. Kaliginedi, V. et al. Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 134, 5262–5275 (2012).

    Article  CAS  Google Scholar 

  28. Valkenier, H. et al. Cross-conjugation and quantum interference: a general correlation? Phys. Chem. Chem. Phys. 16, 653–662 (2013).

    Article  Google Scholar 

  29. Cornil, J., Karzazi, Y. & Bredas, J. Negative differential resistance in phenylene ethynylene oligomers. J. Am. Chem. Soc. 124, 3516–3517 (2002).

    Article  CAS  Google Scholar 

  30. Liu, R., Ke, S-H., Baranger, H. U. & Yang, W. Negative differential resistance and hysteresis through an organometallic molecule from molecular-level crossing. J. Am. Chem. Soc. 128, 6274 (2006).

    Article  CAS  Google Scholar 

  31. Verzijl, C. J. O. & Thijssen, J. M. DFT-based molecular transport implementation in ADF/BAND. J. Chem. Phys. C 116, 24393–24412 (2012).

    Article  CAS  Google Scholar 

  32. Loertscher, E. et al. Transport properties of a single-molecule diode. ACS Nano 6, 4931–4939 (2012).

    Article  Google Scholar 

  33. Batra, A. et al. Tuning rectification in single-molecular diodes. Nano Lett. 13, 6233–6237 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out with financial support from the Dutch Foundation for Fundamental Research on Matter (FOM), NWO/OCW, FP7-framework programme ELFOS, ERC grant no. 240299 and by an ERC advanced grant (Mols@Mols). The authors thank C. Verzijl for help with DFT calculations.

Author information

Authors and Affiliations

Authors

Contributions

D.D. and H.v.d.Z. designed the project. M.P. fabricated the devices. H.V. and J.H. designed and provided the molecules. M.P. and M.K. performed the low-temperature I–V series without electrode fusion. M.P. and R.F. performed the low-temperature I–V breaking series. R.F. performed the room-temperature I–V breaking series. M.P., J.S., J.C.G. and J.T. performed the DFT + NEGF calculations. N.R. and F.G. performed the molecular dynamics simulations. M.P., J.S., J.T. and H.v.d.Z. wrote the manuscript. All authors contributed to the interpretation of the data and commented on the manuscript.

Corresponding author

Correspondence to Herre S. J. van der Zant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 7803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrin, M., Frisenda, R., Koole, M. et al. Large negative differential conductance in single-molecule break junctions. Nature Nanotech 9, 830–834 (2014). https://doi.org/10.1038/nnano.2014.177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing