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Two-dimensional (2D) atomic crystals1, such as graphene2 and atomically thin 

transition metal dichalcogenides3, 4 (TMDCs), are currently receiving a lot of 

attention. They are crystalline, and thus of high material quality, even so, they can 

be produced in large areas and are bendable, thus providing opportunities for novel 

applications. Here, we report a truly 2D p-n junction diode, based on an 

electrostatically doped5 tungsten diselenide (WSe2) monolayer. As p-n diodes are the 

basic building block in a wide variety of optoelectronic devices, our demonstration 

constitutes an important advance towards 2D optoelectronics. We present 

applications as (i) photovoltaic solar cell, (ii) photodiode, and (iii) light emitting 

diode. Light power conversion and electroluminescence efficiencies are ≈ 0.5 % and 

≈ 0.1 %, respectively. Given the recent advances in large-scale production of 2D 

crystals6, 7, we expect them to profoundly impact future developments in solar, 

lighting, and display technologies. 
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Most of today's electronic devices rely on bulk semiconductor crystals. However, their 

rigidity, heavy weight, and high costs of production hinder seamless integration into 

everyday objects. Therefore other, non-crystalline, materials are currently investigated, 

with organic and thin-film semiconductors8, 9 being the most prominent ones. These are, 

however, notoriously known for their low material quality and degradation over time. 2D 

atomic crystals, on the other hand, are crystalline, yet they can (potentially) be produced 

at low cost and in large areas, making them attractive for applications such as solar cells 

or display panels. 

 P-n junction diodes are an integral part of many optoelectronic devices. P–n 

junctions have previously also been formed in graphene10, but did not show diode-like 

rectification behavior, due to Klein-tunneling11. Although graphene can be employed for 

photodetection12, it does not produce a sizable photovoltage because of its zero bandgap. 

For the same reason, graphene p-n junctions would not produce any electrically driven 

light emission. Graphene has extensively been explored for solar and display 

applications, but only in conjunction with other materials6, 13–15. More recently, other 2D 

crystals, such as MoS2 and WSe2, have gained increasing attention3, 4, 16–19, as these 

materials have a bandgap. Bulk MoS2 and WSe2 are indirect semiconductors, whereas 

their monolayers exhibit a direct gap20, 21, making them attractive for optoelectronics. 

Very recently, a p-n junction diode has been realized22 in ionic liquid gated bulk MoS2. 

However, to our knowledge, a monolayer p-n diode has not yet been demonstrated in any 

2D crystal. 

In our device, electrostatic doping is used to form a monolayer WSe2 lateral p-n 

junction diode. As schematically illustrated in Figure 1a, split gate electrodes couple to 
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two different regions of a WSe2 flake (crystal structure in Figure 1b). Biasing one gate 

with a negative and the other with a positive voltage, draws holes and electrons, 

respectively, into the channel and a p-n junction is realized. The device can also be 

operated as a resistor by applying gate voltages of same polarity. A similar concept has 

previously been employed to realize carbon nanotube diodes5 and double-gated organic 

field effect transistors23. Details of the device fabrication are outlined in the Methods 

section. A microscope image is shown in Figure 1c. 

Prior to device fabrication, the WSe2 flake was extensively characterized to assure 

monolayer thickness. This is essential for achieving efficient electrically driven light 

emission, as only monolayers exhibit a direct bandgap20, 21. In Figure 1d we show 

photoluminescence (PL) from mono-, bi-, and multi-layer flakes. In agreement with 

previous reports24, pronounced PL emission at 1.64 eV, with spectral width of 56 meV 

(full-width at half-maximum – FWHM), is obtained at the direct excitonic transition of 

monolayer WSe2. As the thickness is increased, a strong reduction in quantum yield is 

observed due to the transition of the material from being a direct to an indirect 

semiconductor20, 21, 24. In addition to PL, we performed Raman measurements, the results 

of which are presented for the monolayer flake in the inset of Figure 1d. We find a 

pronounced peak at 248.7 cm-1 and a small shoulder at 260 cm-1, proofing that the flake is 

indeed monolayer24. 

After device fabrication, we acquired in a first step the gating characteristics by 

interconnecting the two gate electrodes (VG1 = VG2) and leaving the substrate electrically 

floating. As depicted in Figure 2a, the device exhibits clear ambipolar transfer 

characteristics, demonstrating that both electrons (n) and holes (p) can be injected into the 
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channel. This is in contrast to MoS2, where strong Fermi level pinning25 and the large 

bandgap make it more difficult to obtain p-conduction, which has as yet only been 

achieved by means of ionic liquid gating26. The rather low on/off ratio of 1–5×102 is 

attributed to inefficient gating of the intrinsic channel region, which occurs only by stray 

fields from the split gates. For the same reason it is not possible to extract any meaningful 

field effect mobilities from this measurement. Mobilities, obtained for standard back-

gated field effect transistor are in the range 0.1–1 cm2/Vs, and we expect similar values in 

the diode device. The transfer characteristic shows a small hysteresis that we attribute to 

charge traps in the gate dielectric27 and/or interface water28. 

Figure 2b shows an idealized band diagram of the device when operated as p-n 

junction diode (VG1 < 0, VG2 > 0). From this figure, our motivation for using asymmetric 

contact metallization becomes apparent. At the anode we used palladium (Pd), which is a 

high work function metal, to align the Fermi level with the valence band edge of WSe2 

for hole injection18, 29. At the cathode we used titanium (Ti), which has low work 

function, for electron injection. However, as Ti is prone to oxidation, other metals, such 

as nickel29, may be preferable. 

In Figure 2c we present electrical characteristics measured under different gate 

bias configurations. The dashed lines show I-V curves when operating the device as n- 

(VG1 = VG2 = 40 V; green dashed line) or p-type (VG1 = VG2 = -40 V; blue dashed line) 

resistor. The n-type resistance is more than order of magnitude smaller than the p-type 

resistance, in agreement with the gate characteristic. By applying gate biases of opposite 

polarity (VG1 = -40 V, VG2 = 40 V; solid green line), a p-n junction diode is realized and 

the device now clearly shows rectifying behavior. We deduce the diode parameters – 
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saturation current IS and ideality factor n – from the Shockley diode equation 𝐼 =

𝐼! exp 𝑉/𝑛𝑉! − 1  in the presence of a series resistance RS that is associated with the 

contacts and doping regions, and obtain IS = 0.02 fA, n = 2.6, and RS = 95 MΩ (see 

Supplementary Information (SI);  denotes the thermal voltage). The large ideality 

factor implies that recombination current dominates over diffusion current, indicating a 

large density of trap states in WSe2 that act as recombination centers. We can now 

reverse the gate voltages (VG1 = 40 V, VG2 = -40 V; solid blue line) and operate the diode 

in the opposite (n-p) direction. The higher on-resistance (RS = 8 GΩ) is attributed to the 

asymmetric device structure that favors current flow in the other direction. 

Figure 3a shows I-V curves under optical illumination (see Methods for 

experimental details). The meaning of the curves is the same as in Figure 2c. When 

biased in p-n (n-p) diode configuration, the I-V characteristics are being shifted down 

(up) and there is a current flow to an external load. Our atomic monolayer diode can thus 

be applied for photovoltaic solar energy conversion. Importantly, the I-V curves are 

barely affected when the device is gated as n- or p-type resistor. This is a clear indication 

that the photoresponse does not arise from one of the Schottky contacts, as it relies on the 

existence of a p-n junction. Moreover, the photocurrent changes sign when the gate 

polarities are flipped, which cannot be explained by the built-in potential due to 

asymmetric contact metallization30, either. 

As the device produces both a current and a voltage, electrical power, Pel, can be 

extracted. In the inset we plot Pel versus voltage under p-n configuration and incident 

illumination of 1400 W/m2. A maximum electrical output power of Pel,m = 9 pW is 

obtained at Vm = 0.64 V. The corresponding current is Im = 14 pA and the dashed 

VT
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rectangle in Figure 3a shows the associated power area. For the fill factor, defined as the 

ratio of maximum obtainable power to the product of the open-circuit voltage, VOC, and 

short-circuit current, ISC, a value of FF = Pel,m / (VOCISC )  ≈ 0.5 is obtained. We can now 

also give an estimate of the power conversion efficiency, which is the percentage of the 

incident light energy that is converted into electrical energy, 𝜂!" = 𝑃!",!/𝑃!"#. If we 

assume that the power conversion takes place in the 0.46 × 2.8 µm2 large intrinsic device 

region, we obtain 𝜂!" ≈ 0.5 %. This value is comparable to efficiencies reported31 for 

conventional bulk WSe2 p-n junctions (𝜂!" =  0.1–0.6 %). To our knowledge, this 

constitutes the first demonstration of efficient photovoltaic energy conversion in a 2D 

atomic crystal. The ≈ 95 % transparency of the WSe2 monolayer (see SI) makes it 

attractive for semi-transparent solar cells. Moreover, by choosing a proper WSe2 

thickness, the tradeoff between optical transparency and efficiency may be adjusted 

according to the application requirements. 

Besides the vertical shift of the I-V under illumination, we observe a slope of the 

curve at short circuit (V = 0). Following the common practice in literature, we model this 

slope by a shunt resistance 𝑅!" = 𝑑𝑉/𝑑𝐼  |!!! = 100 GΩ. RSH is mainly associated with 

carrier recombination loss and reduces the FF by 𝑅!" 𝑅!"   × 100 % = 37 %, where 

𝑅!" ≈ 𝑉!" 𝐼!"  = 37 GΩ is the characteristic solar cell resistance (see SI). This suggests 

that there is room for further improvement by improving the material quality. Resistive 

losses due to RS can be modeled in similar fashion and are found to be negligible. ISC, 

displayed in Figure 3b, follows a power-law 𝐼!"~𝑃!"#!  with 𝛼 close to one, indicating that 

the carrier loss is dominated by monomolecular recombination, most probably via 
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disorder-induced trap states32. Since ISC is proportional to Popt, VOC scales with ln  (𝑃!"#), 

as shown in Figure 3c. FF is plotted on the right axis of the same figure and is 

approximately independent of light intensity. The drop in efficiency (also shown in 

Figure 3c) for weak illumination is due to the power dependence of VOC. 

When biased in reverse direction, our device can also be operated as a photodiode. 

A photocurrent of 29 pA is obtained at -1 V, which translates into a photoresponsivity of 

R = 16 mA/W, or, by taking the ≈ 5 % absorption of a WSe2 monolayer into account, ≈ 

0.32 A/W internal responsivity. When operated as resistor, our device also shows a 

photoconductive response33 for both n- and p-type conduction (not presented). However, 

this photoconductor suffers from high dark current and Johnson noise, large power 

consumption, and slow frequency response, making the diode operation mode more 

promising for applications. 

Next, we present electrically driven light emission from the p-n junction. Figure 

4a shows emission spectra recorded by applying gate voltages as shown in the inset, and 

running constant currents of I = 50, 100, and 200 nA, respectively, through the device. 

Under reversed (n-p) diode operation we were not able to drive such large currents. The 

estimated electroluminescence (EL) efficiency, being defined as the ratio of emitted 

optical power to electrical input power, is 𝜂!" ≈ 0.1 % (see SI). Currently, 𝜂!" is limited 

by resistive losses in RS and by non-radiative recombination in the WSe2. It can hence be 

increased by reducing contact resistance18, 19 or by using a crystalline substrate34 to reduce 

the density of disorder-induced recombination centers32. EL has recently also been 

obtained35 in monolayer MoS2 by a unipolar current that generates excitons via impact 

excitation36 (𝜂!" ≈ 0.001 %). In contrast, our device is operated as a true light emitting 
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diode with ambipolar carrier injection, and we can exclude hot carrier effects for the 

following reasons: The EL (i) is absent under unipolar operation (green curve in Figure 

4a); (ii) exhibits linear current dependence (inset in Figure 4a), whereas impact excitation 

shows exponential behavior35, 36; and (iii) occurs with higher efficiency and at lower 

power density (≈ 10 W/cm2 ). 

The EL emission peaks at 1.547 eV, which is 93 meV below the monolayer PL in 

Figure 1d. We assign the shift to different dielectric environments in both experiments, 

which influence the exciton binding energy due to Coulomb screening. As illustrated in 

Figure 4b, the spectral position of the PL, recorded directly from the device (1.573 eV), 

roughly coincidences with that obtained in EL, evidencing that EL arises from an 

excitonic transition. The large exciton binding energy in TMDCs37, 38, may thus offer an 

opportunity for tailoring the emission by engineering of the dielectric environment. Close 

comparison of EL and PL reveals, that the EL spectrum is slightly broadened towards low 

energy, which may be attributed to charged excitons37, 38 being involved in the emission 

process. However, investigation of more homogeneous samples with narrower linewidths 

will be necessary to clarify this.  

For the future, we envision low-cost, flexible and semi-transparent solar cells that 

could be deployed on glass facades or other surfaces for energy harvesting. 2D light 

emitting diodes could lead to new generations of large-area lighting units and transparent, 

flexible displays. We also expect applications in the emerging field of valleytronics39. 

Note added: During the review of this letter we became aware of two similar 

studies40, 41. 
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Methods 

Device fabrication started by standard electron beam lithographic and metal deposition 

techniques to produce Ti/Au (7/35 nm) split gate electrodes (d = 460 nm wide gap) on a 

commercial Si/SiO2 wafer (340 nm oxide thickness). In a second lithography step, 

250×250 µm2 large Ti/Au (15/70 nm) bonding pads, connected to the gate electrodes, 

were patterned. Using plasma-enhanced chemical vapor deposition, a 100-nm-thick Si3N4 

layer was uniformly deposited across the sample surface, apart from the bonding pad 

area, which was covered with a shadow mask. WSe2 was mechanically exfoliated from 

bulk (Nanosurf Inc.) onto a stack of polymers34 deposited on top of a sacrificial silicon 

wafer. The layer thickness of the polymer stack was chosen such that WSe2 monolayers 

could be identified with an optical microscope. By dissolving the bottom polymer in 

water, the top polymer with the WSe2 flake was released from the wafer, turned upside 

down, and placed with micrometer-precision across the gap, such that it overlaps on both 

sides with the gate electrodes. The top polymer was then dissolved. Finally, the anode 

and cathode contact electrodes were patterned lithographically, where – for reasons that 

are explained in the main text – the anode was made of Pd/Au (20/40 nm) and the 

cathode of Ti/Au (20/40 nm). The nominal widths of the electrostatic n- and p-doping 

regions between the contact electrodes and the intrinsic (ungated) region of the device are 

900 nm each. The sample was annealed for several hours at 380 K in vacuum to remove 

doping adsorbates and water from the surface. 

Photovoltaic response was measured with white light from a halogen lamp (its 

emission spectrum is presented as SI), that we focused with a microscope objective onto 

the sample. In advance, we calibrated the optical power density by measuring the 
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transmission through a 10-µm-diameter pinhole. Electroluminescence was collected with 

a 20× microscope objective and fed via a multimode fiber into a grating spectrometer, 

equipped with a silicon photodetector array. For better long-term stability, the sample 

was placed in a high vacuum chamber (≈ 5×10-6 mbar) and kept there during all 

measurements. The device was found to be functional in ambient air as well. 
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Figure 1. WSe2 monolayer device with split gate electrodes. (a) Schematic drawing of the 

device structure. (b) Three-dimensional schematic representation of WSe2. Monolayers are ≈ 0.7 

nm thick and are mechanically exfoliated from a bulk crystal. (c) Colored microscope image of 

the device. In between the gate electrodes and the WSe2 flake there is a 100-nm-thick gate 

dielectric. The anode electrode is made of Pd/Au and the cathode of Ti/Au. The gap between the 

gates is 460 nm wide. (d) PL from mono- (solid blue line), bi- (solid black line), and multi-layer 

(dashed black line) WSe2 flakes. Inset: Raman spectrum of a monolayer. 
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Figure 2. Electrical characterization. (a) Gate characteristic of the device (0.2 V bias voltage). 

Both electrons and holes can be injected into the channel. The curve was obtained by scanning the 

gate voltage from -20 V to 20 V and back. (b) Band diagram when operated as p-n junction diode 

(VG1 < 0, VG2 > 0). Asymmetric contact metallization allows more efficient electron (green) and 

hole (blue) injection. (c) I-V characteristics of the device in the dark for biasing conditions as 

shown in the inset: p-n (solid green line), n-p (solid blue line), n-n (dashed green line), p-p 

(dashed blue line). 
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Figure 3. Device operation as solar cell and photodiode. (a) I-V characteristics of the device 

under optical illumination with 1400 W/m2. The meaning of the curves is the same as in Figure 

2c: p-n (solid green line), n-p (solid blue line), n-n (dashed green line), p-p (dashed blue line). 

When operated as diode (solid lines), electrical power, Pel, can be extracted. Inset: Pel versus 

voltage under incident illumination of 1400 W/m2. Maximum power conversion efficiency is 

obtained for Vm = 0.64 V and Im = 14 pA. The dashed rectangle in the main panel shows the 

corresponding power area. (b) Short-circuit current ISC. Symbols: measurement; dashed line: fit of 

power-law. (c) Open-circuit voltage VOC (green symbols), fill factor FF (red symbols), and power 

conversion efficiency 𝜂!" (blue symbols). All parameters are plotted versus incident light 

intensity. 
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Figure 4. Device operation as light emitting diode. (a) Electroluminescence emission spectra 

recorded for gate voltages as shown in the inset and constant currents of 50, 100, and 200 nA, 

respectively (blue symbols: measurements, black lines: Gaussian fits). Curves are offset for 

clarity. The green curve demonstrates that no light emission is obtained under unipolar (n-type) 

conduction. Inset: Emission amplitude versus current on a double-logarithmic scale. Symbols: 

measurement; dashed line: the data can be fitted by a power-law 𝐼! with α close to one (α = 

0.95). (b) Photoluminescence recorded from the WSe2 flake on the device. Symbols: 

measurement; line: Gaussian fit. 
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I.) I-V characteristic of WSe2 p-n junction diode in the dark 
 
The Shockley diode equation relates the current I of a p-n junction to the bias voltage V, 

𝐼 = 𝐼! 𝑒!/!!! − 1 , 

where IS is the saturation current, VT is the thermal voltage (≈ 26 mV at T = 300 K), and n 
is the ideality factor. A more realistic diode model has to take a series resistance RS – 
which in our device is associated with the metal/WSe2 contacts and the p- and n-doping 
regions – into account. An explicit equation for the diode current can then be obtained† 
by using the Lambert 𝒲-function 

𝐼 = !!!
!!
𝒲 !!!!

!!!
𝑒(!!!!!!) !!! − 𝐼!. 

The model can reproduce our measurement (VG1 = -40 V, VG2 = 40 V, blue line in Figure 
S1a) over several orders of magnitude (solid black line), and we extract IS = 0.02 fA, n = 
2.6, and RS = 95 MΩ. For bias voltages below ≈ 0.5 V, the current falls below the noise 
floor of our measurement equipment (100 fA). For opposite gate biases (VG1 = 40 V, VG2 
= -40 V; Figure S1b), we find a much larger resistance of RS = 8 GΩ. The diode 
parameters IS and n, however, are essentially the same (IS = 0.03 fA, n = 2.6). 

 

II.)   I-V characteristic of WSe2 p-n junction diode under optical illumination 
 
Figure S2a shows I-V characteristics of the p-n junction diode (VG1 = -40 V, VG2 = 40 V) 
under optical illumination with power densities varied between 0 and 3000 W/m2. As 
described in the main text, a slope of the curves at short circuit is observed that can be 

                                                
† Banwell, T. & Jayakumar, A. Exact analytical solution for current flow through diode with 
series resistance. Electronics Letters 36, 291–292 (2000). 
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modeled by a shunt resistance RSH. The I-Vs under optical illumination can be obtained 
from the equivalent circuit in the inset of Figure S2a, 

𝐼 = 𝐼! 𝑒(!!!!!) !!! − 1 + !!!!!
!!"

− 𝐼!, 

where IL is the photocurrent, and RS = 95 MΩ, n = 2.6, and IS = 0.02 fA, as deduced 
above. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. I-V characteristic of p-n junction diode under forward bias. Solid blue line: 
experimental data; solid black line: fit of diode equation with RS ≠ 0; dashed black line: fit of 
diode equation with RS = 0. RS denotes the diode serial resistance. The noise floor of the 
measurement instrument is 100 fA (green dashed line). (a) VG1 = -40 V, VG2 = 40 V. (b) VG1 = 40 
V, VG2 = -40 V. 
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Figure S2. (a) I-V characteristic of p-n junction diode (VG1 = -40 V, VG2 = 40 V) under optical 
illumination. Solid blue lines: experimental data; dashed green lines: theoretical fits. Inset: 
Equivalent circuit model of a photovoltaic solar cell. (b) Optical power dependence of 
characteristic resistance RCH and shunt resistance RSH (extracted from (a)). (c) Normalized series 
(𝑅! 𝑅!") and shunt (𝑅!" 𝑅!") resistances, describing dissipation and recombination losses, 
respectively. 
 

By using the Lambert 𝒲-function, I can again be written‡ as an analytical expression 

                                                
‡ Jain, A., Sharma, S. & Kapoor, A. Solar cell array parameters using Lambert W-function. Solar 
Energy Materials and Solar Cells 90, 25–31 (2006). 
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𝐼 = !!!
!!
𝒲 !!!!!!"

!!!(!!!!!")
𝑒!!"(!!!!!!!!!!!) !!!(!!!!!") + !!!!!!"!!!!!"

!!!!!"
. 

We fit this equation to the measurement data in Figure S2a (dashed lines), extract RSH, 
and plot the results in Figure S2b (green symbols). In the same figure we plot the quantity 
𝑅!" = 𝑉! 𝐼! ≈ 𝑉!" 𝐼!" , which is the characteristic resistance of the solar cell (blue 
symbols). The influence of the shunt on electrical output power can be determined by 
calculating the power in the absence of RSH minus the power loss in the shunt, 𝑃!" ≈
𝑉!𝐼! − 𝑉!! 𝑅!". A similar analysis for RS yields 𝑃!" ≈ 𝑉!𝐼! − 𝐼!! 𝑅!. In the presence of 
both series and shunt resistance, we thus obtain for the fill factor of the solar cell 

𝐹𝐹 ≈ 𝐹𝐹!"#!" 1− !!"
!!"

1− !!
!!"

. 

From Figure S2c, in which we plot the quantities 𝑅! 𝑅!" and 𝑅!" 𝑅!", it becomes 
apparent that recombination losses (described by 𝑅!") severely reduce the fill factor by ≈ 
40 %, whereas resistive losses (𝑅!) at the contacts are negligible (< 0.5 %). 

 

 
III.)   Emission spectrum of halogen lamp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S3. Emission spectrum of halogen lamp. 
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IV.)   Estimation of optical absorption and collection efficiency 
 
The optical absorption in monolayer WSe2 is estimated by integration of the absorption 
spectrum§ over the wavelength range of the halogen lamp in Figure S3. Standing wave 
effects in the device are neglected. The so obtained absorption is ≈ 5 %. 
 
The electroluminescence collection efficiency 𝜂!"## is estimated from the transmission T 
of all optical components in the beam path (microscope objective, cryostat window, 
beamsplitter, fiber coupler, etc.) and the integral over the collection angle defined by the 
numerical aperture NA of the objective lens 

𝜂!"## =
!
!!

𝑑𝜙 sin  (Θ)𝑑Θ!"#$%&  (!")
!

!!
! . 

Modifications of the emission pattern due to the substrate and the electrodes are 
neglected. 

 

                                                
§ Huang, J.-K. et al. Large-Area and Highly Crystalline WSe2 Monolayers: from Synthesis to 
Device Applications. arXiv:1304.7365 (2013). 

 


