Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Step-like enhancement of luminescence quantum yield of silicon nanocrystals

This article has been updated

Abstract

Carrier multiplication by generation of two or more electron–hole pairs following the absorption of a single photon may lead to improved photovoltaic efficiencies1 and has been observed in nanocrystals made from a variety of semiconductors, including silicon. However, with few exceptions2, these reports have been based on indirect ultrafast techniques3,4,5,6. Here, we present evidence of carrier multiplication in closely spaced silicon nanocrystals contained in a silicon dioxide matrix by measuring enhanced photoluminescence quantum yield. As the photon energy increases, the quantum yield is expected to remain constant, or to decrease as a result of new trapping and recombination channels being activated. Instead, we observe a step-like increase in quantum yield for larger photon energies that is characteristic of carrier multiplication7. Modelling suggests that carrier multiplication is occurring with high efficiency and close to the energy conservation limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for quantum yield determination.
Figure 2: Spectral dependence of external quantum yield of photoluminescence.
Figure 3: Effect of inter-nanocrystal separation.
Figure 4: Photovoltaic impact.

Similar content being viewed by others

Change history

  • 21 October 2011

    In the version of this Letter originally published online, the third sentence of the abstract should have read: "Here, we present evidence of carrier multiplication in closely spaced silicon nanocrystals contained in a silicon dioxide matrix by measuring enhanced photoluminescence quantum yield." This has been corrected in all versions of the Letter.

References

  1. Green, M. A. Third Generation Photovoltaics (Springer-Verlag, 2003).

    Google Scholar 

  2. Sambur, J. B., Novet, T. & Parkinson, B. A. Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010).

    Article  CAS  Google Scholar 

  3. Shabaev, A., Efros, A. L. & Nozik, A. J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 2856–2863 (2006).

    Article  CAS  Google Scholar 

  4. Schaller, R. D., Sykora, M., Pietryga, J. M. & Klimov, V. I. Seven excitons at the cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 6, 424–429 (2006).

    Article  CAS  Google Scholar 

  5. Beard, M. C. et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

    Article  CAS  Google Scholar 

  6. Thrinh, M. T. et al. In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713–1718 (2008).

    Article  Google Scholar 

  7. Beard, M. C. et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett. 10, 3019–3027 (2010).

    Article  CAS  Google Scholar 

  8. Vavilov, S. I. Die Fluoreszenzausbeute von Farbstof losungen als Funktion der Wellenlange des anregenden Lichtes. Z. Physik. 42, 311–318 (1927).

    Article  CAS  Google Scholar 

  9. Cruz, R. A., Pilla, V. & Catunda, T. Quantum yield excitation spectrum (UV-visible) of CdSe/ZnS core–shell quantum dots by thermal lens spectrometry. J. Appl. Phys. 107, 083504 (2010).

    Article  Google Scholar 

  10. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  11. Allan, G. & Delerue, C. Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: role of defects. Phys. Rev. B 79, 195324 (2009).

    Article  Google Scholar 

  12. Cooney, R. R. et al. Breaking the phonon bottleneck for holes in semiconductor quantum dots. Phys. Rev. Lett. 98, 177403 (2007).

    Article  Google Scholar 

  13. Pandey, A. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008).

    Article  CAS  Google Scholar 

  14. Kanzawa, Y. et al. Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrix. Solid State Commun. 7, 533–537 (1997).

    Article  Google Scholar 

  15. Valenta, J. & Linnros, J. in Silicon Nanophotonics: Basic Principles, Present Status and Perspectives (ed. Khriachtchev, L.) Ch. 7 (World Scientific Publishing, 2009).

    Google Scholar 

  16. Godefroo, S. et al. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotech. 3, 174–178 (2008).

    Article  CAS  Google Scholar 

  17. Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. & Delerue, C. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999).

    Article  CAS  Google Scholar 

  18. de Boer, W. D. A. M., et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nature Nanotech. 5, 878–884 (2010).

    Article  CAS  Google Scholar 

  19. de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  CAS  Google Scholar 

  20. Miura, S., Nakamura, T., Fujii, M., Inui, M. & Hayashi, S. Size dependence of photoluminescence quantum efficiency of Si nanocrystals. Phys. Rev. B 73, 245333 (2006).

    Article  Google Scholar 

  21. Timmerman, D., Izeddin, I. & Gregorkiewicz, T. Saturation of luminescence from Si nanocrystals embedded in SiO2 . Phys. Status Solidi A 207, 783–187 (2010).

    Article  Google Scholar 

  22. Wegh, R. T., Donker, H., Oskam, K. D. & Meijerink, A. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999).

    Article  CAS  Google Scholar 

  23. Miritello, M., Lo Salvio, R., Cardile, P. & Priolo, F. Enhanced down conversion of photons emitted by photoexcited ErxY2–xSi2O7 films grown on silicon. Phys. Rev. B 81, 041411(R) (2010).

    Article  Google Scholar 

  24. Dexter, D. L. Possibility of luminescent quantum yields greater than unity. Phys. Rev. 108, 630–633 (1957).

    Article  CAS  Google Scholar 

  25. Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    Article  CAS  Google Scholar 

  26. Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–120 (2002).

    Article  CAS  Google Scholar 

  27. Werner, J. H., Kolodinski, S. & Queisser, H. J. Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 72, 3851–3854 (1994).

    Article  CAS  Google Scholar 

  28. Timmerman, D., Izzedin, I., Stallinga, P., Yassievich, I. N. & Gregorkiewicz, T. Space-separated quantum cutting with Si nanocrystals for photovoltaic applications. Nature Photon. 2, 105–109 (2008).

    Article  CAS  Google Scholar 

  29. Valenta, J. et al. Light-emisssion performance of silicon nanocrystals deduced from single nanocrystal spectroscopy. Adv. Funct. Mater. 18, 2666–2672 (2008).

    Article  CAS  Google Scholar 

  30. de Boer, W. D. A. M. et al. Increased carrier generation rate in Si nanocrystals in SiO2 investigated by induced absorption. Appl. Phys. Lett. 99, 053126 (2011).

    Article  Google Scholar 

  31. Švrček, V., Slaoui, A. & Muller, J. C. Silicon nanocrystals as light converter for solar cells. Thin Solid Films 451–452, 384–388 (2004).

    Article  Google Scholar 

  32. Wolf, M., Brendel, R., Werner, J. H. & Queisser, H. J. Solar cell efficiency and carrier multiplication in Si1–xGex alloys. J. Appl. Phys. 83, 4213–4221 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Nederlandse Organisatie voor Wetenschappleijk Onderzoek (NWO), Stichting voor de Technologische Wetenschappen (STW) and Stichting der Fundamenteel Onderzoek der Materie (FOM). Part of this work (J.V.) was supported by Research Centre LC510 and Research Plan MSM0021620835 of the Ministry of Education, Youth and Sports and Project KAN400100701 of the Grant Agency of the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Contributions

D.T. and T.G. conceived the project, co-wrote the paper and, together with J.V. and K.D., designed the experiments. D.T., J.V. and K.D. performed the experiments and contributed to data analysis. D.T. and K.D. prepared sputtered and po-Si materials, respectively. T.G. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to D. Timmerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmerman, D., Valenta, J., Dohnalová, K. et al. Step-like enhancement of luminescence quantum yield of silicon nanocrystals. Nature Nanotech 6, 710–713 (2011). https://doi.org/10.1038/nnano.2011.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing