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Supplemental information 

 

Device Fabrication 

All devices were prepared on silicon-on-insulator (SOI; Soitec Inc.) wafers. The SOI wafers were 

pre-doped by thermally diffusing spin-on-dopant (Boron A; Filmtronics, Inc.) with rapid thermal 

annealing (RTA) at 820C for 3 minutes. The resulting sheet resistance indicates a doping concentration 

of 2x1019 cm-3, with the thickness of the silicon epilayer determined by atomic force microscopy to be 25 

nm, 22 nm and 20 nm (depending on the device) with a variance of 1 nm. The nanomesh films (NM) and 

nanowires (NWA) are fabricated by the SNAP technique [30], while the e-beam nanomesh (EBM) and 

thin films (TF) are defined by e-beam lithography (EBL). 

For the NM devices, two perpendicularly aligned Pt nanowire arrays are made using two consecutive 

superlattice nanowire pattern array (SNAP) procedures on top of an SOI wafer (Soitec, Inc.). SNAP 

protocols are described in Refs. 17 and 30. For the NWA devices only one SNAP procedure is carried 

out, resulting in a single, aligned Pt nanowire array. For the EBM and TF devices, e-beam lithography 

and metallization are used to make the transfer-ready Pt nanostructures. Next, we define the membranes 
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and the beams (hereafter referred to as the device platform) by electron-beam lithography and electron-

beam assisted metal evaporation. The pattern transfer is performed by a CF4/He reactive ion etch 

(hereafter referred to as RIE1). The etch is terminated at the buried oxide layer by endpoint detection via 

a surface reflectivity measurement. Afterwards, Pt is removed by aqua regia (HNO3:HCl = 1:3) followed 

by 10 minutes of piranha (H2SO4:H2O2 = 5:1) cleaning. At this point, both the silicon device (NM, EBM, 

NWA or TF) and the silicon device platform have been made (Fig. S1a). The following steps are identical 

regardless of the device type (hereafter referred to as device). 

An Al etch mask is placed on top of the device to protect it in subsequent fabrication step. The top 

few nanometers of the device platform are removed at this point by RIE1 to make it electrically 

insulating.  A 250 nm thick low-stress silicon-nitride film, which serves as a structural backbone to the 

platform, is then deposited via plasma enhanced chemical vapor deposition (PECVD, STS Multiplex). 

 

Figure S1. Device fabrication. The scale of the device is exaggerated from reality for better 
visualiztion. (a) Silicon nanomesh with monolithically-defined silicon device platform. (Yellow). 
(b) Device platform with silicon-nitride film as the structural backbone. (c) Ti/Pt heater/sensor 
defined on to the platform. (d) Parylene C conformally deposited on to the platform. (e) Buried 
oxide removed by RIE1 process. (f) Si handle layer etched by XeF2. (g) Device fully 
suspended by buried oxide removal with HF vapor.
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Another Al etch mask is then placed on top of the silicon-nitride layer, and patterned to match the device 

platform.  An RIE1 process then defines the silicon-nitride film to match the shape of the platform. Al is 

then removed using an acidic mixture (H3PO4:CH3COOH:HNO3:H2O = 16:1:1:2). The resulting structure 

looks much the same as before, but has been greatly strengthened by silicon-nitride (Figure S1b). Next, 

the platinum resistive thermometers (PRT), which also serve as heaters, are fabricated by EBL and 

metallization - typically, 60 nm of Pt is deposited on top of a 10 nm Ti adhesion layer (Figure S1c).  

Device suspension involves the gas phase etchants XeF2 and HF vapor. The device platform is 

protected from damage by the HF vapor by a 200 nm layer of poly(monochloro-p-xylylene) or parylene C 

(SCS parylene deposition system). Parylene C coating has proven to be conformal, pinhole free and 

resistive to HF [31]. Prior to parylene coating, an Al metal mask was deposited onto the device to prevent 

direct contact with parylene. Similarly, another metal etch-mask, Al or Ni-Cr, is placed on top of the 

parylene layer and over the device platform. O2 plasma (RIE, Unaxis) is then used to etch through 

parylene, and results in a structure that is now protected from HF vapor damage (Figure S1d). [32]. It is 

necessary to also etch through the buried oxide layer and reach the underlying Si handle layer. This is to 

facilitate the removal of the buried oxide under the device in order to achieve a fully suspended device. 

RIE1 etch is again used to etch through the oxide, stopping once the handle layer has been reached 

(Figure S1e). As before, an Al film was protecting the device, including the platform, from etching. After 

the removal of Al, the device and the platform are ready for suspension. 

A layer of 6% polymethyl methacrylate (PMMA) e-beam resist is spun on the chip, and two 

openings in PMMA are patterened on each side of the device platform. XeF2 etch (custom XeF2 pulsed 

etching system) through the holes is isotropic and undercuts the device platform, releasing it from the 

chip (Figure S1f). The overall etch time is about 2 minutes at 2000 mTorr and room temperature. The 

PMMA layer is then removed using an acetone bath, followed by methanol, before finally drying by a 

CO2 supercritical drying process (Automegasamdri-915B, Tousimis).  

        An HF vapor etch process is then applied to release the device from the buried oxide substrate, 

resulting in a fully suspended device (Figure S1g).  A home-built HF vapor etcher equipped with a wafer 
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heating stage was designed for homogeneous and stiction-free oxide removal at elevated temperatures. 

The etching process is performed with the wafer heated to a temperature of ~80C and exposed to the HF 

environment for ~30 minutes to completely remove the buried oxide layer of ~125 nm in thickness. The 

sample is wire-bonded to a chip that is promptly inserted into the vacuum measurement system. All 

measurements are performed at pressures smaller than 7×10-6 mTorr. 

 

Measurement Procedure 

Li Shi et al. have detailed measurement and analysis procedures in their report of thermal and 

thermoelectric property measurements of one-dimensional nanostructures on suspended device platforms 

[18]. We adapted their platform and procedures to enable measurements of thermal conductance on 

monolithically-fabricated, fully-

suspended devices on SOI substrates. 

We refer the reader to their work for 

details on the procedures. In the 

following, we briefly summarize our 

adaptation. 

In our measurement platform, the 

sample is bridged between a pair of 

suspended membrane “islands”, as 

previously described in the Device 

Fabrication section. Each membrane 

contains a set of serpentine Pt lines that 

serves as a PRT and is suspended by 

four long (~70 µm) beams along which 

the electrical connections are routed. 

 

Figure S2. Schematic diagram for the thermal conductivity 
measurement platform. TH and TS represent the temperatures 
of the heating and sensing membranes respectively. T0 is the 
substrate temperature. QH, QL represents the amount of heat 
generated by the heater and the lead, respectively. Q is the 
amount of heat transported through the sample and Gs is the 
thermal conductance of the sample. 
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One of the PRTs also serves as a heater and measures the hot side temperature. The other measures the 

cold side temperature. (Figure S2) 

The cryostat is ramped to a set temperature T0 at a rate of <3 K min-1 to minimize thermal stresses on 

the suspended structure. After the cryostat temperature has stabilized, a current source (Keithley 6221) is 

used to supply a small sinusoidal current iac,h ~ 250 nA at frequency fh > 700 Hz on top of a dc current I to 

the heating PRT. The differential resistances Rh (resistance of the serpentine element) and RL (resistance 

of the lead) of the heating PRT are measured simultaneously with a pair of lock-in amplifiers (Stanford 

Research Systems SRS830). Another SRS830 lock-in is used to source a sinusoidal current iac,s ~ 250 nA 

at frequency fs through a high-precision 10 MΩ metal film resistor (Vishay Sfernice CNS020) to the 

sensing PRT, while measuring the differential resistance Rs. These measurements are repeated for the 

entire set of dc currents before the cryostat is ramped to another set temperature, upon which the 

measurement cycle repeats. 

At the conclusion of the experiment, the set of Rs(I=0) and Rh(I=0) acquired at various temperatures 

T0 is fitted using linear least squares regression to obtain dRs(I=0)/dT and dRh(I=0)/dT. The temperature 

rise of the heating and sensing PRTs are then given as  

Th 
Rh (I)

dRh (I  0)
dT

; Rh  Rh (I) Rh (I  0)  for fh > 700 Hz 

Ts 
Rs(I)

dRs(I  0)
dT

;  Rs  Rs(I) Rs(I  0) 

The Joule heat developed in the heating PRT and its leads are Qh = I2Rh and 2QL = 2I2RL and we can thus 

calculate the beam and sample thermal conductances. 

Gb 
Qh QL

Th  Ts

 

Gs Gb
Ts

Th Ts

 

Error Analysis 
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We have adopted the procedures described by Li Shi et al [18] and begin our data analysis by 

calibrating the resistances of the PRTs on each membrane as a function of T. We then apply a dc heating 

current to one of the PRTs to cause Joule heating of that membrane. This results in a temperature 

difference between the membranes, and heat is dissipated through the bridging sample. Finally, the 

sample thermal conductance is evaluated with the known magnitude of the Joule heat and the measured 

temperature difference. 

The platinum resistance thermometers (PRTs) are calibrated by linear least squares fitting of the 

PRT resistances at I = 0 to polynomial functions of the membrane temperature. Two conditions must be 

met for this fit to be valid. When the heating PRT is “off” (i.e., dc current I = 0), we assume both 

membranes to be at the same temperature T, equal to the environment temperature T0. This approximation 

is excellent only if the lock-in excitation ac currents iac,h and iac,s are chosen to be small (~250 nA), so that 

their heating contributions can be neglected. Second, because linear least squares analysis implicitly 

assumes the independent variable T to be error-free, the random errors in the resistance must dominate. 

Typically, measurement noise in the environment temperature T0 is <25 mK at 100–300 K (<0.025%), 

while the resistance errors are generally ~1%. As the random errors in our T measurements are more than 

an order of magnitude smaller than those in R, we may safely use linear least squares fitting. Figure 3 

shows a typical fit for the heating PRT resistance. We note that the residuals are on the order of no more 

than ~0.3%. 

In the following, we will first focus on the derivation of the “fitting error” introduced by the use of 

linear least squares fitting to a model function. Later, measurement errors are considered. Both sources of 

error are propagated into a final estimate for the random error in the sample thermal conductance Gs. 

Finally, we highlight a potential source of systematic error and explain how it can be eliminated.   

Random errors in the fit coefficients βn 

The random error in the polynomial fit coefficients is by far the most onerous to obtain and we will 

derive it explicitly here. For the sake of clarity, we will momentarily set aside the distinction between the 

heating and sensing PRTs in the following discussion. Let us initially consider a linear fit for the 
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Let us define a residual function ri for each of the m data point (Ti, Ri) as 

ri  Ri  (1  2Ti)   for i 1,...,m . 

The goal of linear least squares is to minimize the sum of squares S  

S  Wiiri
2

i1

m

  

of the residual ri, weighted by the weight factor Wii. The minimum of S is found with the minimization 

conditions 

S
1

 0  2 Wiiri
ri

1i1

m


S
2

 0  2 Wiiri
ri

2i1

m













Wiiri(1  2Ti)  WiiRi

i1

m


i1

m



Wiiri(1  2Ti)Ti  WiiRiTi
i1

m


i1

m


 

and we can rewrite the minimization conditions as a matrix 



1  m
T1  Tm











W11  0
  

0  Wmm

















1 T1

 

m Tm

















1

2











1  m
T1  Tm











W11  0
  

0  Wmm

















R1



Rm

















 

or more concisely in vector notation 

TT WT  TT WR  

where β is the vector of fit coefficients, R the resistance vector, W the (diagonal) weight matrix and T the 

temperature matrix. This result is general for any order of the polynomial fit.  

Rearranging the result above, we obtain 

  (TT WT)1TT WR  --- Eq(1) 

which enables the estimation of the errors in the fit coefficients that arise from non-zero residuals in 

fitting the Ri points. In other words, given a covariance matrix M of the resistance vector R, and Eq(1) 

above, the covariance matrix Mβ of the fit coefficients β is   
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M  (TTWT)1TTWMWTT(TT WT)1  

from the mapping property of covariance matrices. 

Assuming the measurement errors are uncorrelated, the covariance matrix of R is given as M = σ2In 

where In is the n×n identity matrix and σ2 is the variance of the residual ri, estimated from 

 2 
ri

2

m  ni1

m

  

where n is the number of fit coefficients (e.g., n = 2 for a linear fit: β1 and β2). For uncorrelated errors, we 

use unit weights for all points (W = Im, the m×m identity matrix), so that 

M  (TTM1T)1  2(TTT)1. 

For the explicit example of n = 2 (straight-line) fitting, we obtain 

M 
 2

m Ti
2  ( Ti

2)2
Ti

2  Ti
 Ti m













 and  2 
ri

2

m  2 . 

The variances in the fit coefficients β1 and β2 can be read off directly as 

1

2  M11
 

 2 Ti
2

m Ti
2  ( Ti )2

 

 2

2  M22
 

m 2

m Ti
2  ( Ti )2

 

which are the standard results. 

In the general case of the (n − 1)th-order polynomial fitting with n fit coefficients, we obtain 



M   2

m Ti  Ti
n

Ti Ti
2  Ti

n1
   

Ti
n Ti

n1  Ti
2n





















1

 and  2 
ri

2

m  n . 

We conclude this section by considering the impact of making j = 1,…,N multiple measurements of Ri 

and Ti at each of m different temperatures (i = 1,…,m). The preceding results are simply modified with 

replacement of the variables Ri and Ti by their mean values 
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

Ri  Ri 
1
N

Ri
j1

N

  and 


Ti  Ti 
1
N

Ti
j1

N

 . 

The variance of residuals σ2 should be interpreted as the “fitting error” and is a measure of how well the 

fit function R(T) fits the measured points. It depends primarily on the fitting function used and is only 

partly affected by measurement error. Hence we leave it unmodified. Therefore, a proper choice of the 

fitting function is crucial if the errors in the fit coefficients are to be minimized. 

Random error in the gradient dR/dT 

The slope dR/dT is required for determination of the membrane temperature from the PRT resistance 

measurements. In this section, we will obtain an error estimate for the slope, given the error estimates for 

the fit coefficients derived in the preceding section. For a polynomial function of order (n − 1) with n fit 

coefficients 

R(T)  1  2T  ... nT
n1 

the slope is  

dR
dT

 2  23T  ... (n 1)nT
n2. 

A popular fit for platinum resistance thermometers is the Callendar-Van Dusen equation 

R(T)  R0[1 AT  BT 2  CT 3(T 100)] 

which suggests a polynomial fit of up to 4th-order. In our analyses, we have found a 3rd-order polynomial 

fit sufficiently accurate, with little discernable reduction in the residuals for higher orders. Therefore, we 

will explicitly derive the error in the slope for cubic polynomial fits below. 

The slope of a cubic polynomial fit is 

dR
dT

 2  23T  34T
2  

and therefore an estimate of the variance of the slope is 
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

 dR
dT

2  2

2  4T 2 3

2  9T 2 4

2

variance terms
  

 4T 2 3
 6T 2 2 4

12T 3 3 4

covariance terms
  

 M22
  4T 2M33

  9T 4M44


  
 4TM23

  6T 2M24
 12T 3M34


  

 

We have dropped variance and covariance terms involving the independent variable T, as it is assumed to 

be error-free. It is necessary to keep all remaining covariance terms: the fit coefficients are correlated, 

even if the measurements are not. 

For all other fit orders, we provide the estimated variance of the slope in vector notation, again neglecting 

(co)variance in T, 

 dR
dT

2 A TMA  where 

AT  0 1 2T  nTn1  

if all variance and covariance terms are kept and 

 dR
dT

2  Tr A TMA  where 



A T 

0
1

2T


nT n1























 

if only the variance terms are desired. 

Random error in the temperature rise ΔT  

Following the analysis of Li Shi et al, the temperature rise is given by  

Th 
Rh (I)  Rh (I  0)

dRh (I  0)
dT

 for Hz 100~21 hf   

for the heating PRT, where τ is the thermal time constant of the suspended device. We use this form as we 

perform our measurements at fh ~ 1 kHz. The expression is 

Ts 
Rs(I)  Rs(I  0)

dRs(I  0)
dT
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if only the variance terms are desired. 

Random error in the temperature rise ΔT  

Following the analysis of Li Shi et al, the temperature rise is given by  

Th 
Rh (I)  Rh (I  0)

dRh (I  0)
dT

 for Hz 100~21 hf   

for the heating PRT, where τ is the thermal time constant of the suspended device. We use this form as we 

perform our measurements at fh ~ 1 kHz. The expression is 

Ts 
Rs(I)  Rs(I  0)

dRs(I  0)
dT

 

for the sensing PRT. Rs (I) and Rs (I = 0) respectively denote the measured values of resistance Rs with and 

without a dc current flowing in the heating PRT. From the preceding discussion, assuming uncorrelated 

errors in the resistance measurements, we obtain for the estimated variance in the temperature rise  

Th,s

2 
Rh,s (I )

Rh,s(I)

 dRh,s dT

dRh,s dT











Rh,s(I)
dRh,s dT











2


Rh,s (I 0)

Rh,s(I  0)

 dRh,s dT

dRh,s dT











Rh,s(I  0)
dRh,s dT











2

 

where the subscripts h,s denote heating and sensing PRTs respectively. 

The (differential) resistances Rh, RL and Rs are obtained from the raw lock-in voltage measurements on the 

inner and outer electrodes of each PRT, using the following equations 

Rh
outer 

vac,h
outer

iac,h

Rh
inner 

vac,h
inner

iac,h

Rs
outer 

vac,s
outer

iac,s

Rs
inner 

vac,s
inner

iac,s


















Rh  Rh

inner

RL  Rh
outer  Rh

inner

Rs  Rs
inner

 

and assuming uncorrelated measurement errors, the variances are 

 Rh

2  Rh
2
 vac,h

inner

vac,h
inner











2


 iac,h

iac,h











2












 

 L
2  RL

2 Rh
outer 2

 vac,h
outer

vac,h
outer











2


 iac,h

iac,h











2












 Rh

inner 2
 vac,h

inner

vac,h
inner











2


 iac,h

iac,h











2
























 

Rs

2  Rs
2
 vac,s

inner

vac,s
inner











2


 iac,s

iac,s











2












 

We estimate the random error in vac (“inner” and “outer” for both heating and sensing PRTs) using either 

the sample variance of the measured voltages, or the reading error from the vendor datasheet, whichever 

is larger. We have calibrated the heating PRT current source (see section on systematic errors below) and 

estimate the error in iac,h with the calibration reading error. We used a resistor (Vishay Sfernice CNS020) 
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to convert a voltage source (Stanford Research Systems SRS830) into a current source for the sensing 

PRT, so the random error in iac,s includes both resistor and instrumental contributions. 

Random errors in the Joule heats Qh and QL 

The Joule heat dissipated by the passage of a dc current I is Qh = I2Rh in the heating PRT, and 2QL = 

2I2RL in the pair of current-carrying leads. Assuming uncorrelated measurement errors, the variance is  

Qh,L

2 Qh,L
2 4  I

I








2


Rh,L

Rh,L











2










 

where the subscripts h,L denote heating PRT and current-carrying lead respectively. The variance in I is 

estimated from the vendor datasheets for our current source (Keithley Instruments Model 6221). 

Random errors in the thermal conductances Gb and Gs 

The beam thermal conductance is given as 

Gb 
Qh QL

Th  Ts

 

and we obtain the variance in Gb as 

Gb

2 Gb
2 Qh

2 QL

2

(Qh QL )2 
Th

2 Ts

2

(Th  Ts)
2









. 

The sample thermal conductance is [18]: 

Gs Gb
Ts

Th Ts

Gb
1

(Th Ts)1
 

and we obtain the variance in Gs as 

Gs

2 Gs
2 Gb

Gb











2


Ts

2Th

2  Th
2Ts

2

Ts
2(Th Ts)

2












. 

Both variances were calculated assuming uncorrelated errors in measurements. 

Systematic errors in the thermal conductance Gs 

We do not expect difficulties with systematic error when measurements are performed with properly 

calibrated instruments. Instead, we will highlight a potential source of systematic error when using our 
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where the subscripts h,L denote heating PRT and current-carrying lead respectively. The variance in I is 

estimated from the vendor datasheets for our current source (Keithley Instruments Model 6221). 

Random errors in the thermal conductances Gb and Gs 

The beam thermal conductance is given as 
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The sample thermal conductance is [18]: 
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and we obtain the variance in Gs as 

Gs
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Both variances were calculated assuming uncorrelated errors in measurements. 

Systematic errors in the thermal conductance Gs 

We do not expect difficulties with systematic error when measurements are performed with properly 

calibrated instruments. Instead, we will highlight a potential source of systematic error when using our 

approach. We used a Keithley Instruments Model 6221 as the current source for the heating PRT. The 

instrument provides a convenient way to superpose a sinusoidal ac current with amplitude iac,h on top of 

an dc offset current I. 

        For the sinusoidal ac current iac,h, the vendor specifies an accuracy of 1% of iac,h + 0.2% of the 

working range, while for the dc current I, the quoted accuracy is 0.2% of I + 0.2% of the working range. 

The working range can be no smaller than the magnitude of I + iac,h. Because I (~ 20 µA) is much larger 

than iac,h (~ 250 nA) in our experiments, the working range error contribution affects iac,h 

disproportionately. Even though our instrument performed well within specifications, we found a 10-20% 

error between the displayed value and the actual value of iac,h sourced. The magnitude of the error was 

fixed for a given range selection, so we performed all our measurements within the same working range. 

To correct for the error, we measured the actual value of iac,h sourced by the Model 6221, using a Stanford 

Research Systems SRS830 lock-in amplifier. The result is a value of iac,h accurate to 1% with precision 

limited by the SRS830 reading error. 

Uncertainty of the Thermal Conductivity δ 

The thermal conductivity is obtained from the measured thermal conductance of each sample and the 

geometrical factor (κ = Gs × geometrical factor), i.e. the cross-section and length of the equivalent 

channels for the NM and EBM; and the exact cross section and length of the NWA and TF samples. The 

geometrical factor (G.F.) for the NWA, EBM, NM can be described by G.F. = L/(n×T×W) where L 

represents the length of the system across the measurement platform, n is the number of wires or 

equivalent channels, T is the thickness of the silicon epilayer, and W is the width of a nanowire or 

equivalent channel (Figure 2a).  The number of nanowires can be calculated by dividing the total width of 

the sample W0, by the pitch of the wire or the equivalent channel array P. Thus, G.F = (P×L)/(W0×T×W). 

Therefore, the uncertainty of the thermal conductivity can be evaluated by 

2 22 2 2 2
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The uncertainty of the measured Gs is determined as previously described.  

For the NM, 34.6 1.9P   nm, 7.31 0.07L   m, 0 7.28 0.04W   m, 

22.81 2.33W   nm as determined by SEM. 22.3 1.3T   nm based on AFM measurements at five 

different positions of the SOI wafer. 26.32 0.51sG   nW/K at 250 K. As a result, 

1.80 0.23   W/m-K.  

For the NWA, 34.4 1.6P   nm, 8.45 0.13L   m, 0 7.71 0.21W   m, 

28.25 1.46W   nm, 20.1 1.2T   nm, 56.81 1.14sG   nW/K at 250 K giving 3.40 0.33    

W/m-K. 
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