Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical methods for the production of graphenes

A Corrigendum to this article was published on 01 April 2010

This article has been updated

Abstract

Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphite oxide and graphene oxide.
Figure 2: CMG oxide sheets.
Figure 3: Graphene sheets from graphite derivatives.

Similar content being viewed by others

Change history

  • 21 March 2010

    In the version of this Review Article originally published, the unit for conductivity in the first line of Table 2 should have been S cm−1. This error has been corrected in the HTML and PDF versions of the text.

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  3. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  4. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  5. Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).

    Article  CAS  Google Scholar 

  6. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  7. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  8. Park, S. et al. Graphene oxide papers modified by divalent ions—Enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008).

    Article  CAS  Google Scholar 

  9. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  10. Ramanathan, T. et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotech. 3, 327–331 (2008).

    Article  CAS  Google Scholar 

  11. Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Article  Google Scholar 

  12. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  CAS  Google Scholar 

  13. Eizenberg, M. & Blakely, J. M. Carbon monolayer phase condensation on Ni(111). Surf. Sci. 82, 228–236 (1970).

    Article  Google Scholar 

  14. Aizawa, T., Souda, R., Otani, S., Ishizawa, Y. & Oshima, C. Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys. Rev. Lett. 64, 768–771 (1990).

    Article  CAS  Google Scholar 

  15. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  16. Lu, X., Yu, M., Huang, H. & Ruoff, R. S. Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999).

    Article  CAS  Google Scholar 

  17. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  18. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  19. Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).

    Article  CAS  Google Scholar 

  20. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  CAS  Google Scholar 

  21. Dato, A., Radmilovic, V., Lee, Z., Phillips, J. & Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8, 2012–2016 (2008).

    Article  CAS  Google Scholar 

  22. Wang, J. J. et al. Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85, 1265–1267 (2004).

    Article  CAS  Google Scholar 

  23. Campos-Delgado, J. et al. Bulk production of a new form of sp carbon: crystalline graphene nanoribbons. Nano Lett. 8, 2773–2778 (2008).

    Article  CAS  Google Scholar 

  24. Choucair, M., Thordarson, P. & Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotech. 4, 30–33 (2009).

    Article  CAS  Google Scholar 

  25. Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466 (1860).

    Google Scholar 

  26. Schafhaeutl, C. On the combination of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron. Phil. Mag. 16, 570–590 (1840).

    Google Scholar 

  27. Staudenmaier, L. Verfahren zur Darstellung der Graphitsaure. Ber. Deut. Chem. Ges. 31, 1481 (1898).

    Article  CAS  Google Scholar 

  28. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  29. He, H., Riedl, T., Lerf, A. & Klinowski, J. Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 100, 19954–19958 (1996).

    Article  CAS  Google Scholar 

  30. He, H., Klinowski, J., Forster, M. & Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).

    Article  CAS  Google Scholar 

  31. Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    Article  CAS  Google Scholar 

  32. Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  CAS  Google Scholar 

  33. Buchsteiner, A., Lerf, A. & Pieper, J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110, 22328–22338 (2006).

    Article  CAS  Google Scholar 

  34. Stankovich, S. et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).

    Article  CAS  Google Scholar 

  35. Jung, I. et al. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007).

    Article  CAS  Google Scholar 

  36. Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  37. Boehm, H. P., Clauss, A., Fischer, G. O. & Hofmann, U. Das Adsorptionsverhalten sehr dunner Kohlenstoff-Folien. Anorg. Allg. Chem. 316, 119–127 (1962).

    Article  CAS  Google Scholar 

  38. Boehm, H. P., Eckel, M. & Scholz, W. Uber den Bildungsmechanismus des Graphitoxids. Anorg. Allg. Chem. 353, 236–242 (1967).

    Article  CAS  Google Scholar 

  39. Xu, Y., Bai, H., Lu, G., Li, C. & Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008).

    Article  CAS  Google Scholar 

  40. Park, S. et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008).

    Article  CAS  Google Scholar 

  41. Chen, H., Muller, M. B., Gilmore, K. J., Wallace, G. G. & Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557–3561 (2008).

    Article  CAS  Google Scholar 

  42. Si, Y. & Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008).

    Article  CAS  Google Scholar 

  43. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol. 3, 270–274 (2008).

    Article  CAS  Google Scholar 

  44. Wang, X., Zhi, L. & Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

    Article  CAS  Google Scholar 

  45. Stankovich, S., Piner, R., Nguyen, S. T. & Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006).

    Article  CAS  Google Scholar 

  46. Paredes, J. I., Villar-Rodil, S., Martinez-Alonso, A. & Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008).

    Article  CAS  Google Scholar 

  47. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  48. Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    Article  CAS  Google Scholar 

  49. Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).

    Article  CAS  Google Scholar 

  50. Worsley, K. A. et al. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445, 51–56 (2007).

    Article  CAS  Google Scholar 

  51. Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W.-F. & Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008).

    Article  CAS  Google Scholar 

  52. Tung, V. C., Allen, M. J., Yang, Y. & Kaner, R. B. High-throughput solution processing of large-scale graphene. Nature Nanotech. 4, 25–29 (2008).

    Article  Google Scholar 

  53. Wang, G. et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008).

    Article  CAS  Google Scholar 

  54. Muszynski, R., Seger, B. & Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112, 5263–5266 (2008).

    Article  CAS  Google Scholar 

  55. Schniepp, H. C. et al. Functionalized single graphene sheets derived form splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).

    Article  CAS  Google Scholar 

  56. McAllister, M. J. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007).

    Article  CAS  Google Scholar 

  57. Williams, G., Serger, B. & Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008).

    Article  CAS  Google Scholar 

  58. Boukhvalov, D. W. & Katsnelson, M. I. Modeling of graphite oxide. J. Am. Chem. Soc. 130, 10697–10701 (2008).

    Article  CAS  Google Scholar 

  59. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  60. Valles, C. et al. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802–15804 (2008).

    Article  CAS  Google Scholar 

  61. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  62. Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech. 3, 538–542 (2008).

    Article  CAS  Google Scholar 

  63. Hao, R., Qian, W., Zhang, L. & Hou, Y. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun. 6576–6578 (2008).

  64. Liu, N. et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008).

    Article  CAS  Google Scholar 

  65. Liu, Z., Robinson, J. T., Sun, X. & Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008).

    Article  CAS  Google Scholar 

  66. Jung, I. et al. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J. Phys. Chem. C 112, 20264–20268 (2008).

    Article  CAS  Google Scholar 

  67. Olson, D. W. Graphite (natural). USGS Mineral Commodity Summary 2008, 74–75 (US Geological Survey, 2008); available at http://minerals.usgs.gov/minerals/pubs/commodity/graphite/mcs-2008-graph.pdf.

Download references

Acknowledgements

R.S.R. acknowledges previous support from NASA and current support from the state of Texas, and DARPA iMINT and DARPA CERA for support of graphene-related research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney S. Ruoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Ruoff, R. Chemical methods for the production of graphenes. Nature Nanotech 4, 217–224 (2009). https://doi.org/10.1038/nnano.2009.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing