Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Properties and emerging applications of self-assembled structures made from inorganic nanoparticles

Abstract

Just as nanoparticles display properties that differ from those of bulk samples of the same material, ensembles of nanoparticles can have collective properties that are different to those displayed by individual nanoparticles and bulk samples. Self-assembly has emerged as a powerful technique for controlling the structure and properties of ensembles of inorganic nanoparticles. Here we review different strategies for nanoparticle self-assembly, the properties of self-assembled structures of nanoparticles, and potential applications of such structures. Many of these properties and possible applications rely on our ability to control the interactions between the electronic, magnetic and optical properties of the individual nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly of nanoparticles in solution.
Figure 2: Self-assembly of nanoparticles on different types of templates.
Figure 3: Self-assembly of nanoparticles at interfaces.
Figure 4: Assisted assembly of nanoparticles using magnetic fields, electric fields and light.
Figure 5: Coupling between self-assembled nanoparticles.
Figure 6: Applications of self-assembled nanoparticles.

Similar content being viewed by others

References

  1. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  2. Boker, A., He, J., Emrick, T. & Russell, T. P. Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231–1248 (2007).

    Google Scholar 

  3. Kinge, S., Crego-Calama, M. & Reinhoudt, D. N. Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9, 20–42 (2008).

    CAS  Google Scholar 

  4. Srivastava, S. & Kotov, N. A. Nanoparticle assembly for 1D and 2D ordered structures. Soft Matter 5, 1146–1156 (2009).

    CAS  Google Scholar 

  5. Grzybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: from crystals to cells. Soft Matter 5, 1110–1128 (2009).

    CAS  Google Scholar 

  6. Min, Y. J., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527–538 (2008).

    CAS  Google Scholar 

  7. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    CAS  Google Scholar 

  8. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    CAS  Google Scholar 

  9. Nie, Z. H. et al. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nature. Mater. 6, 609–614 (2007).

    CAS  Google Scholar 

  10. Kang, Y. J., Erickson, K. J. & Taton, T. A. Plasmonic nanoparticle chains via a morphological, sphere-to-string transition. J. Am. Chem. Soc. 127, 13800–13801 (2005).

    CAS  Google Scholar 

  11. Caswell, K. K., Wilson, J. N., Bunz, U. H. F. & Murphy, C. J. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 125, 13914–13915 (2003).

    CAS  Google Scholar 

  12. Tang, Z. Y., Zhang, Z. L., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    CAS  Google Scholar 

  13. Zhao, N. N., Liu, K., Greener, J., Nie, Z. H. & Kumacheva, E. Close-packed superlattices of side-by-side assembled Au-CdSe nanorods. Nano Lett. 9, 3077–3081 (2008).

    Google Scholar 

  14. Park, S., Lim, J. H., Chung, S. W. & Mirkin, C. A. Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303, 348–351 (2004).

    CAS  Google Scholar 

  15. Nikolic, M. S. et al. Micelle and vesicle formation of amphiphilic nanoparticles. Angew. Chem. Int. Ed. 48, 2752–2754 (2009).

    CAS  Google Scholar 

  16. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    CAS  Google Scholar 

  17. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Google Scholar 

  18. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Google Scholar 

  19. Iacovella, C. R. & Glotzer, S. C. Complex crystal structures formed by the self-assembly of ditethered nanospheres. Nano Lett. 9, 1206–1211 (2009).

    CAS  Google Scholar 

  20. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    CAS  Google Scholar 

  21. Rycenga, M., McLellan, J. M. & Xia, Y. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 20, 2416–2420 (2008).

    CAS  Google Scholar 

  22. Nie, Z. H., Fava, D., Rubinstein, M. & Kumacheva, E. “Supramolecular” assembly of gold nanorods end-terminated with polymer 'Pom-Poms': Effect of pom-pom structure on the association modes. J. Am. Chem. Soc. 130, 3683–3689 (2008).

    CAS  Google Scholar 

  23. Fava, D., Nie, Z. H., Winnik, M. A. & Kumacheva, E. Evolution of self-assembled structures of polymer-terminated gold nanorods in selective solvents. Adv. Mater. 20, 4318–4322 (2008).

    CAS  Google Scholar 

  24. Nakata, K., Hu, Y., Uzun, O., Bakr, O. & Stellacci, F. Chains of superparamagnetic nanoplarticles. Adv. Mater. 20, 4294–4299 (2008).

    CAS  Google Scholar 

  25. Maye, M. M., Nykypanchuk, D., Cuisinier, M., van der Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Mater. 8, 388–391 (2009).

    CAS  Google Scholar 

  26. Correa-Duarte, M. A., Perez-Juste, J., Sanchez-Iglesias, A., Giersig, M. & Liz-Marzan, L. M. Aligning Au nanorods by using carbon nanotubes as templates. Angew. Chem. Int. Ed. 44, 4375–4378 (2005).

    CAS  Google Scholar 

  27. Wang, H. et al. Cylindrical block co-micelles with spatially selective functionalization by nanoparticles. J. Am. Chem. Soc. 129, 12924–12925 (2007).

    CAS  Google Scholar 

  28. Zhang, Q. L., Gupta, S., Emrick, T. & Russell, T. P. Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. J. Am. Chem. Soc. 128, 3898–3899 (2006).

    CAS  Google Scholar 

  29. Dujardin, E., Peet, C., Stubbs, G., Culver, J. N. & Mann, S. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett. 3, 413–417 (2003).

    CAS  Google Scholar 

  30. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    CAS  Google Scholar 

  31. Warner, M. G. & Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater. 2, 272–277 (2003).

    CAS  Google Scholar 

  32. Tang, Z. Y. & Kotov, N. A. One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005).

    CAS  Google Scholar 

  33. Engtrakul, C. et al. Self-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes. J. Phys. Chem. B 110, 25153–25157 (2006).

    CAS  Google Scholar 

  34. Georgakilas, V. et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007).

    CAS  Google Scholar 

  35. Ryadnov, M. G. & Woolfson, D. N. Fiber recruiting peptides: Noncovalent decoration of an engineered protein scaffold. J. Am. Chem. Soc. 126, 7454–7455 (2004).

    CAS  Google Scholar 

  36. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Google Scholar 

  37. Niemeyer, C. M. & Simon, U. DNA-based assembly of metal nanoparticles. Eur. J. Inorg. Chem. 3641–3655 (2005).

  38. Artemyev, M. et al. Self-organized, highly luminescent CdSe nanorod-DNA complexes. J. Am. Chem. Soc. 126, 10594–10597 (2004).

    CAS  Google Scholar 

  39. Dong, L. Q. et al. DNA-templated semiconductor nanoparticle chains and wires. Adv. Mater. 19, 1748–1751 (2007).

    CAS  Google Scholar 

  40. Zhang, L. F. & Eisenberg, A. Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylic acide) block copolymers Science 268, 1728–1731 (1995).

    CAS  Google Scholar 

  41. Tao, A. R., Huang, J. X. & Yang, P. D. Langmuir-Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41, 1662–1673 (2008).

    CAS  Google Scholar 

  42. Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E. & Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 277, 1978–1981 (1997).

    CAS  Google Scholar 

  43. Tao, A., Sinsermsuksakul, P. & Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotech. 2, 435–440 (2007).

    CAS  Google Scholar 

  44. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    CAS  Google Scholar 

  45. Courty, A., Mermet, A., Albouy, P. A., Duval, E. & Pileni, M. P. Vibrational coherence of self-organized silver nanocrystals in fcc supra-crystals. Nature Mater. 4, 395–398 (2005).

    CAS  Google Scholar 

  46. Cheng, W. L. et al. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater. 8, 519–525 (2009).

    CAS  Google Scholar 

  47. Lin, Y., Skaff, H., Emrick, T., Dinsmore, A. D. & Russell, T. P Nanoparticle assembly and transport at liquid-liquid interfaces. Science 299, 226–229 (2003).

    CAS  Google Scholar 

  48. Volinsky, R. & Jelinek, R. Laser-modulated ordering of gold nanoparticles at the air/water interface. Angew. Chem. Int. Ed. 48, 4540–4542 (2009).

    CAS  Google Scholar 

  49. Huang, J. X., Kim, F., Tao, A. R., Connor, S. & Yang, P. D. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature Mater. 4, 896–900 (2005).

    CAS  Google Scholar 

  50. Pieranski, P. Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett. 45, 569–572 (1980).

    CAS  Google Scholar 

  51. Boker, A. et al. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Mater. 3, 302–306 (2004).

    Google Scholar 

  52. Korth, B. D. et al. Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J. Am. Chem. Soc. 128, 6562–6563 (2006).

    CAS  Google Scholar 

  53. Sheparovych, R. et al. Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly. Chem. Mater. 18, 591–593 (2006).

    CAS  Google Scholar 

  54. Lalatonne, Y., Richardi, J. & Pileni, M. P. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nature Mater. 3, 121–125 (2004).

    CAS  Google Scholar 

  55. Chiang, I. C. & Chen, D. H. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv. Funct. Mater. 17, 1311–1316 (2007).

    CAS  Google Scholar 

  56. Tripp, S. L., Dunin-Borkowski, R. E. & Wei, A. Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. Int. Ed. 42, 5591–5593 (2003).

    CAS  Google Scholar 

  57. Held, G. A., Grinstein, G., Doyle, H., Sun, S. H. & Murray, C. B. Competing interactions in dispersions of superparamagnetic nanoparticles. Phys. Rev. B 64, 012408 (2001).

    Google Scholar 

  58. Ahniyaz, A., Sakamoto, Y. & Bergstrom, L. Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes. Proc. Natl Acad. Sci. USA 104, 17570–17574 (2007).

    CAS  Google Scholar 

  59. Hermanson, K. D., Lumsdon, S. O., Williams, J. P., Kaler, E. W. & Velev, O. D. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001).

    CAS  Google Scholar 

  60. Velev, O. D. & Bhatt, K. H. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2, 738–750 (2006).

    CAS  Google Scholar 

  61. Acharya, S., Patla, I., Kost, J., Efrima, S. & Golan, Y. Switchable assembly of ultra narrow CdS nanowires and nanorods. J. Am. Chem. Soc. 128, 9294–9295 (2006).

    CAS  Google Scholar 

  62. Ryan, K. M., Mastroianni, A., Stancil, K. A., Liu, H. T. & Alivisatos, A. P. Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett. 6, 1479–1482 (2006).

    CAS  Google Scholar 

  63. Gupta, S., Zhang, Q. L., Emrick, T. & Russell, T. P. 'Self-corralling' nanorods under an applied electric field. Nano Lett. 6, 2066–2069 (2006).

    CAS  Google Scholar 

  64. Gong, T. Y. & Marr, D. W. M. Photon-directed colloidal crystallization. Appl. Phys. Lett. 85, 3760–3762 (2004).

    CAS  Google Scholar 

  65. Bechinger, C., Brunner, M. & Leiderer, P. Phase behavior of two-dimensional colloidal systems in the presence of periodic light fields. Phys. Rev. Lett. 86, 930–933 (2001).

    CAS  Google Scholar 

  66. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    CAS  Google Scholar 

  67. Zabet-Khosousi, A. & Dhirani, A. A. Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072–4124 (2008).

    CAS  Google Scholar 

  68. Ghosh, S. K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 107, 4797–4862 (2007).

    CAS  Google Scholar 

  69. Su, K. H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    CAS  Google Scholar 

  70. Chen, C. F., Tzeng, S. D., Chenj, H. Y., Lin, K. J. & Gwo, S. Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling. J. Am. Chem. Soc. 130, 824–826 (2008).

    CAS  Google Scholar 

  71. Zhu, M. Q., Wang, L. Q., Exarhos, G. J. & Li, A. D. Q. Thermosensitive gold nanoparticles. J. Am. Chem. Soc. 126, 2656–2657 (2004).

    CAS  Google Scholar 

  72. Zheng, J. W. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    CAS  Google Scholar 

  73. Frankamp, B. L., Boal, A. K. & Rotello, V. M. Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers. J. Am. Chem. Soc. 124, 15146–15147 (2002).

    CAS  Google Scholar 

  74. Dujardin, E., Hsin, L. B., Wang, C. R. C. & Mann, S. DNA-driven self-assembly of gold nanorods. Chem. Comm. 1264–1265 (2001).

  75. Jain, P. K., Eustis, S. & El-Sayed, M. A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 110, 18243–18253 (2006).

    CAS  Google Scholar 

  76. Koole, R., Liljeroth, P., Donega, C. D., Vanmaekelbergh, D. & Meijerink, A. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. J. Am. Chem. Soc. 128, 10436–10441 (2006).

    CAS  Google Scholar 

  77. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002).

    CAS  Google Scholar 

  78. Lee, J., Govorov, A. O. & Kotov, N. A. Bioconjugated superstructures of CdTe nanowires and nanoparticles: Multistep cascade Forster resonance energy transfer and energy channeling. Nano Lett. 5, 2063–2069 (2005).

    CAS  Google Scholar 

  79. Wang, C. J., Huang, L., Parviz, B. A. & Lin, L. Y. Subdiffraction photon guidance by quantum-dot cascades. Nano Lett. 6, 2549–2553 (2006).

    CAS  Google Scholar 

  80. Tang, Z. Y., Ozturk, B., Wang, Y. & Kotov, N. A. Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains. J. Phys. Chem. B 108, 6927–6931 (2004).

    CAS  Google Scholar 

  81. Wargnier, R. et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett. 4, 451–457 (2004).

    CAS  Google Scholar 

  82. Zaitseva, N., Dai, Z. R., Leon, F. R. & Krol, D. Optical properties of CdSe superlattices. J. Am. Chem. Soc. 127, 10221–10226 (2005).

    CAS  Google Scholar 

  83. Govorov, A. O. et al. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett. 6, 984–994 (2006).

    CAS  Google Scholar 

  84. Lee, J., Hernandez, P., Lee, J., Govorov, A. O. & Kotov, N. A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Mater. 6, 291–295 (2007).

    CAS  Google Scholar 

  85. Zhang, W., Govorov, A. O. & Bryant, G. W. Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett. 97, 146804 (2006).

    Google Scholar 

  86. Kulakovich, O. et al. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2, 1449–1452 (2002).

    CAS  Google Scholar 

  87. Gueroui, Z. & Libchaber, A. Single-molecule measurements of gold-quenched quantum dots. Phys. Rev. Lett. 93, 166108 (2004).

    Google Scholar 

  88. Lee, J., Govorov, A. O., Dulka, J. & Kotov, N. A. Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett. 4, 2323–2330 (2004).

    CAS  Google Scholar 

  89. Cheng, M. T., Liu, S. D., Zhou, H. J., Hao, Z. H. & Wang, Q. Q. Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex. Opt. Lett. 32, 2125–2127 (2007).

    CAS  Google Scholar 

  90. Lee, J. et al. Bioconjugated Ag nanoparticles and CdTe nanowires: Metamaterials with field-enhanced light absorption. Angew. Chem. Int. Ed. 45, 4819–4823 (2006).

    CAS  Google Scholar 

  91. Lu, A. H., Salabas, E. L. & Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007).

    CAS  Google Scholar 

  92. Pileni, M. P. Self-assembly of inorganic nanocrystals: Fabrication and collective intrinsic properties. Acc. Chem. Res. 40, 685–693 (2007).

    CAS  Google Scholar 

  93. Lisiecki, I., Parker, D., Salzemann, C. & Pileni, M. P. Face-centered cubic supra-crystals and disordered three-dimensional assemblies of 7.5 nm cobalt nanocrystals: Influence of the mesoscopic ordering on the magnetic properties. Chem. Mater. 19, 4030–4036 (2007).

    CAS  Google Scholar 

  94. Lalatonne, Y. et al. Mesoscopic structures of nanocrystals: Collective magnetic properties due to the alignment of nanocrystals. J. Phys. Chem. B 108, 1848–1854 (2004).

    CAS  Google Scholar 

  95. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  Google Scholar 

  96. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    CAS  Google Scholar 

  97. Lee, J., Govorov, A. O. & Kotov, N. A. Nanoparticle assemblies with molecular springs: A nanoscale thermometer. Angew. Chem. Int. Ed. 44, 7439–7442 (2005).

    CAS  Google Scholar 

  98. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    CAS  Google Scholar 

  99. Lee, J. S., Han, M. S. & Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 46, 4093–4096 (2007).

    CAS  Google Scholar 

  100. Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741–745 (2005).

    Google Scholar 

  101. Reinhard, B. M., Sheikholeslami, S., Mastroianni, A., Alivisatos, A. P. & Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl Acad. Sci. USA 104, 2667–2672 (2007).

    CAS  Google Scholar 

  102. Liu, G. L. et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotech. 1, 47–52 (2006).

    CAS  Google Scholar 

  103. Choi, Y., Ho, N. H. & Tung, C. H. Sensing phosphatase activity by using gold nanoparticles. Angew. Chem. Int. Ed. 46, 707–709 (2007).

    CAS  Google Scholar 

  104. Li, H. X. & Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl Acad. Sci. USA 101, 14036–14039 (2004).

    CAS  Google Scholar 

  105. Sudeep, P. K., Joseph, S. T. S. & Thomas, K. G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127, 6516–6517 (2005).

    CAS  Google Scholar 

  106. Nie, S. M. & Emery, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Google Scholar 

  107. Kneipp, J., Kneipp, H. & Kneipp, K. SERS - a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37, 1052–1060 (2008).

    CAS  Google Scholar 

  108. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).

    CAS  Google Scholar 

  109. Graham, D., Thompson, D. G., Smith, W. E. & Faulds, K. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nature Nanotech. 3, 548–551 (2008).

    CAS  Google Scholar 

  110. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004).

    CAS  Google Scholar 

  111. Oh, E. et al. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc. 127, 3270–3271 (2005).

    CAS  Google Scholar 

  112. Tseng, R. J., Tsai, C. L., Ma, L. P. & Ouyang, J. Y. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nature Nanotech. 1, 72–77 (2006).

    CAS  Google Scholar 

  113. Bao, J. et al. Bifunctional Au-Fe3O4 nanopartides for protein separation. ACS Nano 1, 293–298 (2007).

    CAS  Google Scholar 

  114. Abu-Reziq, R., Wang, D., Post, M. & Alper, H. Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles: Selective hydrogenation catalysts. Adv. Synth. Catal. 349, 2145–2150 (2007).

    CAS  Google Scholar 

  115. Sun, S. H., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    CAS  Google Scholar 

  116. Hoinville, J. et al. High density magnetic recording on protein-derived nanoparticles. J. Appl. Phys. 93, 7187–7189 (2003).

    CAS  Google Scholar 

  117. Gopalakrishnan, G. et al. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. 45, 5478–5483 (2006).

    CAS  Google Scholar 

  118. Zebli, B., Susha, A. S., Sukhorukov, G. B., Rogach, A. L. & Parak, W. J. Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. Langmuir 21, 4262–4265 (2005).

    CAS  Google Scholar 

  119. Skirtach, A. G. et al. Laser-induced release of encapsulated materials inside living cells. Angew. Chem. Int. Ed. 45, 4612–4617 (2006).

    CAS  Google Scholar 

  120. Murray, R. W. Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008).

    CAS  Google Scholar 

  121. Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F. & Willner, I. 'Plugging into enzymes': Nanowiring of redox enzymes by a gold nanoparticle. Science 299, 1877–1881 (2003).

    CAS  Google Scholar 

  122. Khanal, B. P. & Zubarev, E. R. Purification of high aspect ratio gold nanorods: Complete removal of platelets. J. Am. Chem. Soc. 130, 12634–12635 (2008).

    CAS  Google Scholar 

  123. Zhang, Z. L. & Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 4, 1407–1413 (2004).

    CAS  Google Scholar 

  124. Balazs, A. C. Modeling self-assembly and phase behavior in complex mixtures. Annu. Rev. Phys. Chem. 58, 211–233 (2007).

    CAS  Google Scholar 

  125. Yin, L. L. et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005).

    CAS  Google Scholar 

  126. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    CAS  Google Scholar 

  127. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    CAS  Google Scholar 

  128. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    CAS  Google Scholar 

  129. Cheng, W. L., Park, N. Y., Walter, M. T., Hartman, M. R. & Luo, D. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nature Nanotech. 3, 682–690 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Kumacheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotech 5, 15–25 (2010). https://doi.org/10.1038/nnano.2009.453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing