Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CMOS-compatible fabrication of room-temperature single-electron devices

Abstract

Devices in which the transport and storage of single electrons are systematically controlled could lead to a new generation of nanoscale devices and sensors1,2,3. The attractive features of these devices include operation at extremely low power, scalability to the sub-nanometre regime and extremely high charge sensitivity4,5,6,7,8,9. However, the fabrication of single-electron devices requires nanoscale geometrical control, which has limited their fabrication to small numbers of devices at a time9,10,11,12,13,14,15, significantly restricting their implementation in practical devices. Here we report the parallel fabrication of single-electron devices, which results in multiple, individually addressable, single-electron devices that operate at room temperature. This was made possible using CMOS fabrication technology and implementing self-alignment of the source and drain electrodes, which are vertically separated by thin dielectric films. We demonstrate clear Coulomb staircase/blockade and Coulomb oscillations at room temperature and also at low temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A new architecture for single-electron devices.
Figure 2: Fabrication of single-electron devices.
Figure 3: A field emission scanning electron microscope image after nanoparticle attachment.
Figure 4: Plot of I V characteristics demonstrating Coulomb staircase and Coulomb blockade behaviour.
Figure 5: Single-electron transistors.

Similar content being viewed by others

References

  1. Averin, D. V. & Likharev, K. K. in Mesoscopic Phenomena in Solids (eds. Altshuler, B. L., Lee, P. A. & Webb, R. A.) 173–271 (Elsevier, Amsterdam, 1991).

    Book  Google Scholar 

  2. Kastner, M. A. The single-electron transistor. Rev. Mod. Phys. 64, 849–858 (1992).

    Article  Google Scholar 

  3. Likharev, K. K. Single-electron devices and their applications. Proc. IEEE 87, 606–632 (1999).

    Article  CAS  Google Scholar 

  4. Devoret, M. H. & Schoelkopf, R. J. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000).

    Article  CAS  Google Scholar 

  5. Park, J. et al. Coulomb blockage and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  6. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  CAS  Google Scholar 

  7. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    Article  CAS  Google Scholar 

  8. Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    Article  CAS  Google Scholar 

  9. Andres, R. P. et al. “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272, 1323–1325 (1996).

    Article  CAS  Google Scholar 

  10. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. & McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997).

    Article  CAS  Google Scholar 

  11. Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N. & Ralph, D. C. Metal-nanoparticle single-electron transistors fabricated using electromigration. Appl. Phys. Lett. 84, 3154–3156 (2004).

    Article  CAS  Google Scholar 

  12. Deshmukh, M. M., Prieto, A. L., Gu, Q. & Park, H. Fabrication of asymmetric electrode pairs with nanometre separation made of two distinct metals. Nano Lett. 3, 1383–1385 (2003).

    Article  CAS  Google Scholar 

  13. Matsumoto, K. et al. Room temperature operation of a single electron transistor made by the scanning tunnelling microscope nanooxidation process for the TiOx/Ti system. Appl. Phys. Lett. 68, 34–36 (1996).

    Article  CAS  Google Scholar 

  14. Nijhuis, C. A. et al. Room-temperature single-electron tunnelling in dendrimer-stabilized gold nanoparticles anchored at a molecular printboard. Small 2, 1422–1426 (2006).

    Article  CAS  Google Scholar 

  15. Persson, S. H. M., Olofsson, L. & Gunnarsson, L. A self-assembled single-electron tunnelling transistor. Appl. Phys. Lett. 74, 2546–2548 (1999).

    Article  Google Scholar 

  16. Davidovic, D. & Tinkham, M. Spectroscopy, interactions and level splittings in Au nanoparticles. Phys. Rev. Lett. 83, 1644–1647 (1999).

    Article  CAS  Google Scholar 

  17. Parks, J. J. et al. Tuning the kondo effect with a mechanically controllable break junction. Phys. Rev. Lett. 99, 026601 (2007).

    Article  CAS  Google Scholar 

  18. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  19. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometre separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    Article  CAS  Google Scholar 

  20. Kervennic, Y. V., Van der Zant, H. S. J., Morpurgo, A. F., Gurevich, L. & Kouwenhoven, L. P. Nanometre-spaced electrodes with calibrated separation. Appl. Phys. Lett. 80, 321–323 (2002).

    Article  CAS  Google Scholar 

  21. Kimura, Y. et al. Room-temperature observation of a Coulomb blockade phenomenon in aluminum nanodots fabricated by an electrochemical process. Appl. Phys. Lett. 90, 093119 (2007).

    Article  Google Scholar 

  22. Yasutake, Y. et al. Simultaneous fabrication of nanogap gold electrodes by electroless gold plating using a common medical liquid. Appl. Phys. Lett. 91, 203107 (2007).

    Article  Google Scholar 

  23. Ah, C. S. et al. Fabrication of integrated nanogap electrodes by surface-catalyzed chemical deposition. Appl. Phys. Lett. 88, 133116 (2006).

    Article  Google Scholar 

  24. Krahne, R. et al. Fabrication of nanoscale gaps in integrated circuits. Appl. Phys. Lett. 81, 730–732 (2002).

    Article  CAS  Google Scholar 

  25. Smith, R. K., Lewis, P. A. & Weiss, P. S. Patterning self-assembled monolayers. Prog. Surf. Sci. 75, 1–68 (2004).

    Article  CAS  Google Scholar 

  26. Ma, L.-C. et al. Electrostatic funnelling for precise nanoparticle placement: A route to wafer-scale integration. Nano Lett. 7, 439–445 (2007).

    Article  CAS  Google Scholar 

  27. Danilov, A. V., Golubev, D. S. & Kubatkin, S. E. Tunnelling through a multigrain system: Deducing sample topology from nonlinear conductance. Phys. Rev. B 65, 125312 (2002).

    Article  Google Scholar 

  28. Hanna, A. E. & Tinkham, M. Variation of the Coulomb staircase in a 2-junction system by fractional electron charge. Phys. Rev. B 44, 5919–5922 (1991).

    Article  CAS  Google Scholar 

  29. Wang, B. et al. Tunable single-electron tunnelling behaviour of ligand-stabilized gold particles on self-assembled monolayers. Phys. Rev. B 63, 035403 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Michael for discussions. This work was supported by the Office of Naval Research (N00014-05-1-0030), National Science Foundation CAREER Award (ECS-0449958) and Advanced Research Program of Texas Higher Education Coordinating Board (003656-0014-2006).

Author information

Authors and Affiliations

Authors

Contributions

S.J.K., V.R., R.S. and C.-U.K. conceived and designed the experiments. V.R., R.S., P.B. and L.-C.M. performed the experiments. V.R. and S.J.K. analysed the data. S.J.K., V.R. and C.-U.K. wrote the paper. S.J.K. supervised all aspects of the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Seong Jin Koh.

Supplementary information

Supplementary Information

Fig.1 to Fig.3 (PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, V., Subramanian, R., Bhadrachalam, P. et al. CMOS-compatible fabrication of room-temperature single-electron devices. Nature Nanotech 3, 603–608 (2008). https://doi.org/10.1038/nnano.2008.267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing