Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements

Abstract

The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are 80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Testing system and in situ TEM metrology.
Figure 2: Electron irradiation effects.
Figure 3: The behaviour of the nanotube samples.
Figure 4: The computational double-walled nanotube model.
Figure 5: The effects of crosslinking defects on load transfer.

Similar content being viewed by others

References

  1. Ogata, S. & Shibutani, Y. Ideal tensile strength and band gap of single-walled carbon nanotubes. Phys. Rev. B 68, 165409 (2003).

    Article  Google Scholar 

  2. Ozaki, T., Iwasa, Y. & Mitani, T. Stiffness of single-walled carbon nanotubes under large strain. Phys. Rev. Lett. 84, 1712–1715 (2000).

    Article  CAS  Google Scholar 

  3. Dumitrica, T., Belytschko, T. & Yakobson, B. I. Bond-breaking bifurcation states in carbon nanotube fracture. J. Chem. Phys. 118, 9485–9488 (2003).

    Article  CAS  Google Scholar 

  4. Mielke, S. L. et al. The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004).

    Article  CAS  Google Scholar 

  5. Troya, D., Mielke, S. L. & Schatz, G. C. Carbon nanotube fracture—differences between quantum mechanical mechanisms and those of empirical potentials. Chem. Phys. Lett. 382, 133–141 (2003).

    Article  CAS  Google Scholar 

  6. Yu, M. F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  7. Ding, W. et al. Modulus, fracture strength and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Exp. Mech. 47, 25–36 (2007).

    Article  CAS  Google Scholar 

  8. Barber, A. H., Kaplan-Ashiri, I., Cohen, S. R., Tenne, R. & Wagner, H. D. Stochastic strength of nanotubes: An appraisal of available data. Compos. Sci. Technol. 65, 2380–2384 (2005).

    Article  CAS  Google Scholar 

  9. Barber, A. H., Andrews, R., Schadler, L. S. & Wagner, H. D. On the tensile strength distribution of multiwalled carbon nanotubes. Appl. Phys. Lett. 87, 203106 (2005).

    Article  Google Scholar 

  10. Zhang, S. et al. Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations. Phys. Rev. B 71, 115403 (2005).

    Article  Google Scholar 

  11. Mielke, S. L. et al. The effects of extensive pitting on the mechanical properties of carbon nanotubes. Chem. Phys. Lett. 446, 128–132 (2007).

    Article  CAS  Google Scholar 

  12. Mølhave, K. et al. Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. Ultramicroscopy 108, 52–57 (2007).

    Article  Google Scholar 

  13. Andrews, R., Jacques, D., Qian, D. & Dickey, E. C. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39, 1681–1687 (2001).

    Article  CAS  Google Scholar 

  14. Haddon, R. C., Sippel, J., Rinzler, A. G. & Papadimitrakopoulos, F. Purification and separation of carbon nanotubes. MRS Bull. 29, 252–259 (2004).

    Article  CAS  Google Scholar 

  15. Mawhinney, D. B. et al. Surface defect site density on single walled carbon nanotubes by titration. Chem. Phys. Lett. 324, 213–216 (2000).

    Article  CAS  Google Scholar 

  16. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    Article  CAS  Google Scholar 

  17. Suenaga, K. et al. Imaging active topological defects in carbon nanotubes. Nature Nanotech. 2, 358–360 (2007).

    Article  CAS  Google Scholar 

  18. Yakobson, B. I. Mechanical relaxation and ‘intramolecular plasticity’ in carbon nanotubes. Appl. Phys. Lett. 72, 918–920 (1998).

    Article  CAS  Google Scholar 

  19. Nardelli, M. B., Yakobson, B. I. & Bernholc, J. Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277–R4280 (1998).

    Article  Google Scholar 

  20. Stone, A. J. & Wales, D. J. Theoretical-studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

    Article  CAS  Google Scholar 

  21. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

    Article  CAS  Google Scholar 

  22. Kis, A. et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nature Mater. 3, 153–157 (2004).

    Article  CAS  Google Scholar 

  23. Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K. & Kaski, K. Mechanical properties of carbon nanotubes with vacancies and related defects Phys. Rev. B 70, 245416 (2004).

    Article  Google Scholar 

  24. Huhtala, M. et al. Improved mechanical load transfer between shells of multiwalled carbon nanotubes. Phys. Rev. B 70, 045404 (2004).

    Article  Google Scholar 

  25. Espinosa, H. D., Zhu, Y. & Moldovan, N. Design and operation of a MEMS-based material testing system for in-situ electron microscopy testing of nanostructures. J. Microelectromech. S. 16, 1219–1231 (2007).

    Article  Google Scholar 

  26. Zhu, Y., Moldovan, N. & Espinosa, H. D. A microelectromechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 86, 013506 (2005).

    Article  Google Scholar 

  27. Zhu, Y. & Espinosa, H. D. An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl Acad. Sci. USA 102, 14503–14508 (2005).

    Article  CAS  Google Scholar 

  28. Zhu, Y., Corigliano, A. & Espinosa, H. D. A thermal actuator for nanoscale in-situ microscopy testing: Design and characterization. J. Micromech. Microeng. 16, 242–253 (2006).

    Article  CAS  Google Scholar 

  29. Smith, B. W. & Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509–3515 (2001).

    Article  CAS  Google Scholar 

  30. Endo, M. et al. Stacking nature of graphene layers in carbon nanotubes and nanofibres. J. Phys. Chem. Solids 58, 1707–1712 (1997).

    Article  CAS  Google Scholar 

  31. Qin, L.-C. Electron diffraction from carbon nanotubes. Rep. Prog. Phys. 69, 2761–2821 (2006).

    Article  CAS  Google Scholar 

  32. Stewart, J. J. P. Optimization of parameters for semi-empirical methods. I. Method. J. Comp. Chem. 10, 209–220 (1989).

    Article  CAS  Google Scholar 

  33. Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002).

    Article  CAS  Google Scholar 

  34. Shenderova, O. A., Brenner, D. W., Omeltchenko, A., Su, X. & Yang, L. H. Atomistic modelling of the fracture of polycrystalline diamond. Phys. Rev. B 61, 3877–3888 (2000).

    Article  CAS  Google Scholar 

  35. Elstner, M. et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998).

    Article  CAS  Google Scholar 

  36. Zobelli, A., Gloter, A., Ewels, C. P., Seifert, G. & Colliex, C. Electron knock-on cross-section of carbon and boron nitride nanotubes. Phys. Rev. B 75, 245402 (2007).

    Article  Google Scholar 

  37. Krasheninnikov, A. V., Nordlund, K., Sirvio, M., Salonen, E. & Keinonen, J. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001).

    Article  Google Scholar 

  38. Gomez-Navarro, C. et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nature Mater. 4, 534–539 (2005).

    Article  CAS  Google Scholar 

  39. Bockrath, M. et al. Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283–285 (2001).

    Article  CAS  Google Scholar 

  40. Charlier, J.-C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    Article  CAS  Google Scholar 

  41. Telling, R. H., Ewels, C. P., El Barbary, A. A. & Heggie, M. I. Wigner defects bridge the graphite gap. Nature Mater. 2, 333–337 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Science Foundation (CMMI 0555734 and CHE-0550497) and the Office of Naval Research (N000140710905 and N000140810108). The tests were performed at the Electron Probe Instrumentation Centre (EPIC) at Northwestern University. The authors thank I. Petrov and E. Olson for their contribution in the development of the in situ TEM holder. G.C.S. and S.L.M. acknowledge the NASA University Research, Engineering and Technology Institute on Bio Inspired Materials (NCC-1-02037). P.Z., and use of the Centre for Nanoscale Materials at Argonne National Laboratory, were supported by the Department of Energy (DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Contributions

H.E. conceived and designed the experiments. B.P. and S.L. performed the experiments. H.E., P.Z., G.S. and M.L. conceived the simulations. All authors analysed the data. S.M. contributed analysis tools. All authors discussed the results and co-wrote and commented on the manuscript. B.P. and M.L. contributed equally to this work.

Corresponding author

Correspondence to Horacio D. Espinosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, B., Locascio, M., Zapol, P. et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotech 3, 626–631 (2008). https://doi.org/10.1038/nnano.2008.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing