Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes

Abstract

Single-walled carbon nanotubes (SWNTs) have many exceptional electronic properties. Realizing the full potential of SWNTs in realistic electronic systems requires a scalable approach to device and circuit integration. We report the use of dense, perfectly aligned arrays of long, perfectly linear SWNTs as an effective thin-film semiconductor suitable for integration into transistors and other classes of electronic devices. The large number of SWNTs enable excellent device-level performance characteristics and good device-to-device uniformity, even with SWNTs that are electronically heterogeneous. Measurements on p- and n-channel transistors that involve as many as 2,100 SWNTs reveal device-level mobilities and scaled transconductances approaching 1,000 cm2 V−1 s−1 and 3,000 S m−1, respectively, and with current outputs of up to 1 A in devices that use interdigitated electrodes. PMOS and CMOS logic gates and mechanically flexible transistors on plastic provide examples of devices that can be formed with this approach. Collectively, these results may represent a route to large-scale integrated nanotube electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perfectly aligned arrays of long, linear SWNTs and their implementation in thin-film-type transistors.
Figure 2: Capacitance effects and density scaling studies of transistors that use aligned arrays of SWNTs.
Figure 3: High on/off ratios, current outputs and transconductances in transistors that use aligned arrays of SWNTs as the semiconductor, on rigid and flexible substrates.
Figure 4: High-performance top gate transistors that use aligned arrays of SWNTs for the semiconductor.
Figure 5: n- and p-type SWNT array transistors, with implementation in CMOS and PMOS logic gates.

Similar content being viewed by others

References

  1. Zhou, X., Park, J.-Y., Huang, S., Liu, J. & Mceuen, P. L. Band structure, phonon scattering and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Article  Google Scholar 

  2. Durkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

    Article  Google Scholar 

  3. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

    Article  CAS  Google Scholar 

  4. Lin, Y.-M., Appenzeller, J., Knoch, J. & Avouris P. High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4, 481–489 (2005).

    Article  Google Scholar 

  5. Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).

    Article  CAS  Google Scholar 

  6. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  CAS  Google Scholar 

  7. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  CAS  Google Scholar 

  8. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    Article  CAS  Google Scholar 

  9. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  CAS  Google Scholar 

  10. Guo, J., Hasan, S., Javey, A., Bosman, G. & Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4, 715–721 (2005).

    Article  Google Scholar 

  11. Guo, J., Goasguen, S., Lundstrom, M. & Datta, S. Metal–insulator–semiconductor electrostatics of carbon nanotubes. Appl. Phys. Lett. 81, 1486–1488 (2002).

    Article  CAS  Google Scholar 

  12. Kocabas, C. et al. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1, 1110–1116 (2005).

    Article  CAS  Google Scholar 

  13. Liu, X., Han, S. & Zhou, C. Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 6, 34–39 (2006).

    Article  CAS  Google Scholar 

  14. Li, S., Yu, Z., Rutherglen, C. & Burke, P. J. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett. 4, 2003–2007 (2004).

    Article  CAS  Google Scholar 

  15. Zhou, Y. et al. P-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 4, 2031–2035 (2004).

    Article  CAS  Google Scholar 

  16. Hu, L., Hecht, D. S. & Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).

    Article  CAS  Google Scholar 

  17. Snow, E. S., Campbell, P. M., Ancona, M. G. & Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86, 033105 (2005).

    Article  Google Scholar 

  18. Ismach, A., Segev, L., Wachtel, E. & Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Edn 43, 6140–6143 (2004).

    Article  CAS  Google Scholar 

  19. Han, S., Liu, X. & Zhou, C. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 127, 5294–5295 (2005).

    Article  CAS  Google Scholar 

  20. Kocabas, C., Shim, M. & Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 128, 4540–4541 (2006).

    Article  CAS  Google Scholar 

  21. Park, J.-Y. et al. Electron–phonon scattering in metallic single walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).

    Article  CAS  Google Scholar 

  22. Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article  Google Scholar 

  23. McEuen, P. L., Fuhrer, M. & Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–86 (2002).

    Article  Google Scholar 

  24. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.-M. & Avouris, P. The role of metal–nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005).

    Article  CAS  Google Scholar 

  25. Kim, W. et al. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87, 173101 (2005).

    Article  Google Scholar 

  26. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  CAS  Google Scholar 

  27. Collins, P. G., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    Article  CAS  Google Scholar 

  28. Hur, S.-H., Park, O. O. & Rogers, J. A. Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors. Appl. Phys. Lett. 86, 243502 (2005).

    Article  Google Scholar 

  29. Huang, X. M. H. et al. Controlled placement of individual carbon nanotubes. Nano Lett. 5, 1515–1518 (2005).

    Article  CAS  Google Scholar 

  30. Bradley, K., Gabriel, J.-C. P. & Gruner G. Flexible nanotube electronics. Nano Lett. 3, 1353–1355 (2003).

    Article  CAS  Google Scholar 

  31. Javey, A. et al. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002).

    Article  CAS  Google Scholar 

  32. Ozel, T., Gaur, A., Rogers, J. A. & Shim, M. Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett. 5, 905–911 (2005).

    Article  CAS  Google Scholar 

  33. Shim, M., Javey, A., Kam, N. W. S. & Dai, H. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 123, 11512–11513 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Banks and K. Colravy for help with processing, using facilities at the Frederick Seitz Materials Research Laboratory. This material is based upon work supported by the National Science Foundation under grant NIRT-0403489 and the US Department of Energy, Division of Materials Sciences under Award No. DEFG02-91ER45439, through the Frederick Seitz MRL and Center for Microanalysis of Materials at the University of Illinois at Urbana-Champaign. S.J.K. acknowledges fellowship support from the Institute of Information Technology Assessment of Korea. N.P. and M.A.A. acknowledge the support from the Network for Computational Nanotechnology. Correspondence and requests for materials should be addressed to J.A.R.

Author information

Authors and Affiliations

Authors

Contributions

S.J.K, C.K. and J.A.R. designed the experiments, S.J.K., C.K. and T.O. performed the experiments, S.J.K., C.K., T.O., M.S., N.P., M.A.A., S.V.R. and J.A.R. analysed the data, S.J.K, C.K. and J.A.R. wrote the paper.

Corresponding authors

Correspondence to Seong Jun Kang, Coskun Kocabas or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1—S14 (PDF 1650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S., Kocabas, C., Ozel, T. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech 2, 230–236 (2007). https://doi.org/10.1038/nnano.2007.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing