Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A charge-driven molecular water pump

Abstract

Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications1,2,3,4,5,6,7,8,9, including the desalination of seawater5. Nanopumps driven by electric or magnetic fields can transport ions10,11 and magnetic quanta12, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels13,14, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction to the main system and the flows and fluxes for different charge arrangements in the main system.
Figure 2: Water–charge interaction and the averaged dipole orientation of water molecules inside the SWNT.

Similar content being viewed by others

References

  1. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  2. Whitby, M. & Quirk, N. Fluid flow in carbon nanotubes and nanopipes. Nature Nanotech. 2, 87–94 (2007).

    Article  CAS  Google Scholar 

  3. Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  CAS  Google Scholar 

  4. Regan, B. C., Aloni. S., Ritchie, R. O., Dahmen, U. & Zettl, A. Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004).

    Article  CAS  Google Scholar 

  5. Service, R. F. Desalination freshens up. Science 313, 1088–1090 (2006).

    Article  CAS  Google Scholar 

  6. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  7. Bourlon, B., Wong, J., Miko, C., Forro, L. & Bockrath, M. A nanoscale probe for fluidic and ionic transport. Nature Nanotech. 2, 104–107 (2007).

    Article  CAS  Google Scholar 

  8. Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A. & Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003).

    Article  CAS  Google Scholar 

  9. Ghosh, S., Sood, A. K. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003).

    Article  CAS  Google Scholar 

  10. Fan, R., Yue, M., Karnik, R., Majumdar, A. & Yang, P. D. Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys. Rev. Lett. 95, 086607 (2005).

    Article  Google Scholar 

  11. Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

    Article  CAS  Google Scholar 

  12. Cole, D. et al. Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives. Nature Mater. 5, 305–311 (2006).

    Article  CAS  Google Scholar 

  13. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  14. Li, J. Y. et al. Electrostatic gating of a nanometer water channel. Proc. Natl Acad. Sci. USA 104, 3687–3692 (2007).

    Article  CAS  Google Scholar 

  15. Zhu, F. Q. & Schulten, K. Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J. 85, 236–244 (2003).

    Article  CAS  Google Scholar 

  16. de Gennes, P. G., Brochard-Wyart, F. & Quere, D. Capillarity and Wetting Phenomena (Springer, New York, 2003).

    Google Scholar 

  17. Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

    Article  CAS  Google Scholar 

  18. Linke, H. et al. Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006).

    Article  CAS  Google Scholar 

  19. Beckstein, O. & Sansom, M. S. P. Liquid–vapor oscillations of water in hydrophobic nanopores. Proc. Natl Acad. Sci. USA 100, 7063–7068 (2003).

    Article  CAS  Google Scholar 

  20. Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    Article  CAS  Google Scholar 

  21. Reiter, G. et al. Anomalous behavior of proton zero point motion in water confined in carbon nanotubes. Phys. Rev. Lett. 9724, 7801 (2006).

    Google Scholar 

  22. Sun, L. & Crooks, R. Single carbon nanotube membranes: a well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc. 122, 12340–12345 (2000).

    Article  CAS  Google Scholar 

  23. Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1, 103–111 (2006).

    Article  CAS  Google Scholar 

  24. Joseph, S., Mashl, R. J., Jakobsson, E. & Arulu, N. R. Electrolytic transport in modified carbon nanotubes. Nano Lett. 3, 1399–1403 (2003).

    Article  CAS  Google Scholar 

  25. Zeidel, M. L. et al. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomest. Biochemistry 33, 1606–1615 (1992).

    Article  Google Scholar 

  26. de Groot, B. L. & Grubmüller, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001).

    Article  CAS  Google Scholar 

  27. Hess, B. et al. Gromacs-3.3 (Department of Biophysical Chemistry, University of Groningen, 2005).

  28. Darden, T. A., York, D. M. & Pedersen, L. G. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  29. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  30. Longhurst, M. J. & Quirke, N. The environmental effect on the radial breathing mode of carbon nanotubes in water. J. Chem. Phys. 124, 234708 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. A. Pincus, D. Bensimon, Ruhong Zhou, Chunhai Fan and Jun Yan for helpful discussions. This work was supported by grants from Chinese Academy of Sciences, the National Science Foundation of China under grants nos. 10474109 and 10674146, the National Basic Research Program of China under grant nos. 2007CB936000, 2006CB933000 and 2006CB708612, and Shanghai Supercomputer Center of China.

Author information

Authors and Affiliations

Authors

Contributions

X.J.G. performed most of the numerical simulations. H.P.F. and X.J.G. carried out most of the theoretical analysis. J.Y.L., H.J.L. and R.Z.W. carried out some numerical simulations and theoretical analysis. H.P.F., J.H., X.J.G. and J.C.L. contributed most of the ideas and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jun Hu or Haiping Fang.

Supplementary information

Supplementary Information

Supplementary figures S1–S3 (PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, X., Li, J., Lu, H. et al. A charge-driven molecular water pump. Nature Nanotech 2, 709–712 (2007). https://doi.org/10.1038/nnano.2007.320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing