Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunological properties of engineered nanomaterials

Abstract

Most research on the toxicology of nanomaterials has focused on the effects of nanoparticles that enter the body accidentally. There has been much less research on the toxicology of nanoparticles that are used for biomedical applications, such as drug delivery or imaging, in which the nanoparticles are deliberately placed in the body. Moreover, there are no harmonized standards for assessing the toxicity of nanoparticles to the immune system (immunotoxicity). Here we review recent research on immunotoxicity, along with data on a range of nanotechnology-based drugs that are at different stages in the approval process. Research shows that nanoparticles can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface chemistry. Modifying these factors can significantly reduce the immunotoxicity of nanoparticles and make them useful platforms for drug delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell uptake of materials and the different pathways.
Figure 2: Nanoparticle properties determine their interaction with the immune system.

Similar content being viewed by others

References

  1. Powers, M. Nanomedicine and nano device pipeline surges 68%. NanoBiotech News 1–69 (4 January 2006).

  2. Note for guidance on repeated-dose toxicity (Committee for Proprietary Medicinal Products, London, 2000).

  3. Preclinical Safety Evaluation of Biotechnology — Derived Pharmaceuticals (FDA/CBER/CDER, 1997).

  4. Developing Medical Imaging Drug and Biological Products. Part1: Conducting Safety Assessments (FDA/CBER/CDER, 2004).

  5. Immunotoxicity Studies for Human Pharmaceuticals (FDA/CDER, 2006).

  6. Immunotoxicology Evaluation of Investigational New Drugs (FDA/CDER, 2002).

  7. Immunotoxicity Testing Guidance (FDA/CDRH, 1999).

  8. Leu, D. et al. Distribution and elimination of coated polymethyl [2–14C]methacrylate nanoparticles after intravenous injection in rats. J. Pharm. Sci. 73, 1433–1437 (1984).

    CAS  Google Scholar 

  9. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    CAS  Google Scholar 

  10. Goppert, T. M. & Muller, R. H. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J. Drug Target. 13, 179–187 (2005).

    Google Scholar 

  11. McNeil, S. E. Nanotechnology for the biologist. J. Leukoc. Biol. 78, 585–594 (2005).

    CAS  Google Scholar 

  12. Standard Terminology Relating to Nanotechnology E 2456-06 (ASTM International, 2006).

  13. Alivisatos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

    CAS  Google Scholar 

  14. Bala, I., Hariharan, S. & Kumar, M. N. PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev. Ther. Drug Carrier Syst. 21, 387–422 (2004).

    CAS  Google Scholar 

  15. Bulte, J. W. & Kraitchman, D. L. Monitoring cell therapy using iron oxide MR contrast agents. Curr. Pharm. Biotechnol. 5, 567–584 (2004).

    CAS  Google Scholar 

  16. Fiorito, S. et al. Toxicity and biocompatibility of carbon nanoparticles. J. Nanosci. Nanotechnol. 6, 591–599 (2006).

    CAS  Google Scholar 

  17. Gupta, A. K. & Gupta, M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26, 1565–1573 (2005).

    CAS  Google Scholar 

  18. Xu, Y. & Du, Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm. 250, 215–226 (2003).

    CAS  Google Scholar 

  19. Gessner, A., Lieske, A., Paulke, B. & Muller, R. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur. J. Pharm. Biopharm. 54, 165–170 (2002).

    CAS  Google Scholar 

  20. Gessner, A., Lieske, A., Paulke, B. R. & Muller, R. H. Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J. Biomed. Mater. Res. A 65, 319–326 (2003).

    Google Scholar 

  21. Gessner, A. et al. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int. J. Pharm. 196, 245–249 (2000).

    CAS  Google Scholar 

  22. Luck, M. et al. Plasma protein adsorption on biodegradable microspheres consisting of poly(D,L-lactide-co-glycolide), poly(L-lactide) or ABA triblock copolymers containing poly(oxyethylene). Influence of production method and polymer composition. J. Control. Release 55, 107–120 (1998).

    CAS  Google Scholar 

  23. Goppert, T. M. & Muller, R. H. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur. J. Pharm. Biopharm. 60, 361–372 (2005).

    Google Scholar 

  24. Luck, M. et al. Identification of plasma proteins facilitated by enrichment on particulate surfaces: analysis by two-dimensional electrophoresis and N-terminal microsequencing. Electrophoresis 18, 2961–2967 (1997).

    CAS  Google Scholar 

  25. Diederichs, J. E. Plasma protein adsorption patterns on liposomes: establishment of analytical procedure. Electrophoresis 17, 607–611 (1996).

    CAS  Google Scholar 

  26. Gessner, A., Paulke, B. R., Muller, R. H. & Goppert, T. M. Protein rejecting properties of PEG-grafted nanoparticles: influence of PEG-chain length and surface density evaluated by two-dimensional electrophoresis and bicinchoninic acid (BCA)-proteinassay. Pharmazie 61, 293–297 (2006).

    CAS  Google Scholar 

  27. Gref, R. et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloid. Surf. B 18, 301–313 (2000).

    CAS  Google Scholar 

  28. Peracchia, M. T. et al. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials 20, 1269–1275 (1999).

    CAS  Google Scholar 

  29. Salvador-Morales, C. et al. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43, 193–201 (2006).

    CAS  Google Scholar 

  30. Thode, K. et al. Determination of plasma protein adsorption on magnetic iron oxides: sample preparation. Pharm. Res. 14, 905–910 (1997).

    CAS  Google Scholar 

  31. Luck, M. et al. Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res. 39, 478–485 (1998).

    CAS  Google Scholar 

  32. Balakrishnan, B., Kumar, D. S., Yoshida, Y. & Jayakrishnan, A. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials 26, 3495–3502 (2005).

    CAS  Google Scholar 

  33. Oyewumi, M. O. et al. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Release 95, 613–626 (2004).

    CAS  Google Scholar 

  34. Koziara, J. M. et al. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm. Res. 22, 1821–1828 (2005).

    CAS  Google Scholar 

  35. Wang, J. et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem. Pharmacol. 71, 872–881 (2006).

    CAS  Google Scholar 

  36. Chamberlain, P. & Mire-Sluis, A. R. An overview of scientific and regulatory issues for the immunogenicity of biological products. Dev. Biol. 112, 3–11 (2003).

    CAS  Google Scholar 

  37. Swanson, S. J., Ferbas, J., Mayeux, P. & Casadevall, N. Evaluation of methods to detect and characterize antibodies against recombinant human erythropoietin. Nephron Clin. Pract. 96, c88–c95 (2004).

    CAS  Google Scholar 

  38. Kivisakk, P., Alm, G. V., Fredrikson, S. & Link, H. Neutralizing and binding anti-interferon-beta (IFN-beta) antibodies. A comparison between IFN-beta-1a and IFN-beta-1b treatment in multiple sclerosis. Eur. J. Neurol. 7, 27–34 (2000).

    CAS  Google Scholar 

  39. Roberts, J. C., Bhalgat, M. K. & Zera, R. T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res. 30, 53–65 (1996).

    CAS  Google Scholar 

  40. Tomii, A. & Masugi, F. Production of anti-platelet-activating factor antibodies by the use of colloidal gold as carrier. Jpn. J. Med. Sci. Biol. 44, 75–80 (1991).

    CAS  Google Scholar 

  41. Kreuter, J. Nanoparticles as adjuvants for vaccines. Pharm. Biotechnol. 6, 463–472 (1995).

    CAS  Google Scholar 

  42. Chen, B. X. et al. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc. Natl Acad. Sci. USA 95, 10809–10813 (1998).

    CAS  Google Scholar 

  43. Braden, B. C. et al. X-ray crystal structure of an anti-Buckminsterfullerene antibody fab fragment: biomolecular recognition of C(60). Proc. Natl. Acad. Sci. U. S. A. 97, 12193–12197 (2000).

    CAS  Google Scholar 

  44. Masalova, O. V. et al. Immunostimulating effect of water-soluble fullerene derivatives—perspective adjuvants for a new generation of vaccine. Dokl. Akad. Nauk 369, 411–413 (1999).

    CAS  Google Scholar 

  45. Andreev, S. M. et al. Immunogenic and allergenic properties of fulleren conjugates with aminoacids and proteins. Dokl. Biochem. 370, 4–7 (2000).

    CAS  Google Scholar 

  46. Stieneker, F., Kreuter, J. & Lower, J. High antibody titres in mice with polymethylmethacrylate nanoparticles as adjuvant for HIV vaccines. AIDS 5, 431–435 (1991).

    CAS  Google Scholar 

  47. Castignolles, N. et al. A new family of carriers (biovectors) enhances the immunogenicity of rabies antigens. Vaccine 14, 1353–1360 (1996).

    CAS  Google Scholar 

  48. Rajananthanan, P., Attard, G. S., Sheikh, N. A. & Morrow, W. J. Evaluation of novel aggregate structures as adjuvants: composition, toxicity studies and humoral responses. Vaccine 17, 715–730 (1999).

    CAS  Google Scholar 

  49. Dykman, L. A. et al. Immunogenic properties of colloidal gold. Izv. Akad. Nauk Biol. 1, 86–91 (2004).

    Google Scholar 

  50. Diwan, M. et al. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J. Drug Target. 11, 495–507 (2003).

    CAS  Google Scholar 

  51. Cui, Z., Han, S. J., Vangasseri, D. P. & Huang, L. Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Mol. Pharm. 2, 22–28 (2005).

    CAS  Google Scholar 

  52. Xiang, S. D. et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods 40, 1–9 (2006).

    CAS  Google Scholar 

  53. http://ncl.cancer.gov/120406.pdf

  54. Tan, Y., Li, S., Pitt, B. R. & Huang, L. The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum. Gene Ther. 10, 2153–2161 (1999).

    CAS  Google Scholar 

  55. Dileo, J. et al. Lipid-protamine-DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Mol. Ther. 7, 640–648 (2003).

    CAS  Google Scholar 

  56. Whitmore, M. M., Li, S., Falo, L. Jr & Huang, L. Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses. Cancer Immunol. Immunother. 50, 503–514 (2001).

    CAS  Google Scholar 

  57. Diwan, M., Elamanchili, P., Cao, M. & Samuel, J. Dose sparing of CpG oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery. Curr. Drug Deliv. 1, 405–412 (2004).

    CAS  Google Scholar 

  58. Tsao, N. et al. Inhibition of group A streptococcus infection by carboxyfullerene. Antimicrob. Agents Chemother. 45, 1788–1793 (2001).

    CAS  Google Scholar 

  59. Shvedova, A. A. et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung C. 289, L698–L708 (2005).

    CAS  Google Scholar 

  60. Pulskamp, K., Diabate, S. & Krug, H. F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58–74 (2007).

    CAS  Google Scholar 

  61. Muller, K. et al. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 28, 1629–1642 (2007).

    Google Scholar 

  62. Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644–10654 (2005).

    CAS  Google Scholar 

  63. van Zijverden, M. & Granum, B. Adjuvant activity of particulate pollutants in different mouse models. Toxicology 152, 69–77 (2000).

    CAS  Google Scholar 

  64. Lutsiak, M. E., Kwon, G. S. & Samuel, J. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J. Pharm. Pharmacol. 58, 739–747 (2006).

    CAS  Google Scholar 

  65. Chong, C. S. et al. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Control. Release 102, 85–99 (2005).

    CAS  Google Scholar 

  66. Cui, Z. & Mumper, R. J. Coating of cationized protein on engineered nanoparticles results in enhanced immune responses. Int. J. Pharm. 238, 229–239 (2002).

    CAS  Google Scholar 

  67. Cui, Z. et al. Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine 22, 2631–2640 (2004).

    CAS  Google Scholar 

  68. de Kozak, Y. et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur. J. Immunol. 34, 3702–3712 (2004).

    CAS  Google Scholar 

  69. Balenga, N. A. et al. Protective efficiency of dendrosomes as novel nano-sized adjuvants for DNA vaccination against birch pollen allergy. J. Biotechnol. 124, 602–614 (2006).

    CAS  Google Scholar 

  70. Rajananthanan, P., Attard, G. S., Sheikh, N. A. & Morrow, W. J. Novel aggregate structure adjuvants modulate lymphocyte proliferation and Th1 and Th2 cytokine profiles in ovalbumin immunized mice. Vaccine 18, 140–152 (1999).

    CAS  Google Scholar 

  71. Cui, Z., Hsu, C. H. & Mumper, R. J. Physical characterization and macrophage cell uptake of mannan-coated nanoparticles. Drug Dev. Ind. Pharm. 29, 689–700 (2003).

    CAS  Google Scholar 

  72. Blander, J. M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 7, 1029–1035 (2006).

    CAS  Google Scholar 

  73. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    CAS  Google Scholar 

  74. Aderem, A. & Underhill, D. M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).

    CAS  Google Scholar 

  75. Nagayama, S. et al. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int. J. Pharm. 329, 192–198 (2007).

    CAS  Google Scholar 

  76. Kim, T. H. et al. Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol. Cancer. Ther. 5, 1723–1732 (2006).

    CAS  Google Scholar 

  77. Cuna, M. et al. Development of phosphorylated glucomannan-coated chitosan nanoparticles as nanocarriers for protein delivery. J. Nanosci. Nanotechnol. 6, 2887–2895 (2006).

    CAS  Google Scholar 

  78. Vonarbourg, A. et al. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J. Biomed. Mater. Res. A 78, 620–628 (2006).

    CAS  Google Scholar 

  79. von Zur Muhlen, C. et al. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): Implications on imaging of atherosclerotic plaques. Atherosclerosis 193, 101–111 (2007).

    Google Scholar 

  80. Vonarbourg, A., Passirani, C., Saulnier, P. & Benoit, J. P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27, 4356–4373 (2006).

    CAS  Google Scholar 

  81. Fang, C. et al. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci. 27, 27–36 (2006).

    CAS  Google Scholar 

  82. Kwon, Y. J., Standley, S. M., Goh, S. L. & Frechet, J. M. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J. Control. Release 105, 199–212 (2005).

    CAS  Google Scholar 

  83. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA. 103, 4930–4934 (2006).

    CAS  Google Scholar 

  84. Shaunak, S. et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat. Biotechnol. 22, 977–984 (2004).

    CAS  Google Scholar 

  85. Cromer, J. R. et al. Functionalized dendrimers as endotoxin sponges. Bioorg. Med. Chem. Lett. 15, 1295–1298 (2005).

    CAS  Google Scholar 

  86. Chen, Y. W., Hwang, K. C., Yen, C. C. & Lai, Y. L. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am. J. Physiol. Reg. I. 287, R21–R26 (2004).

    CAS  Google Scholar 

  87. John, A. E. et al. Discovery of a potent nanoparticle P-selectin antagonist with anti-inflammatory effects in allergic airway disease. Faseb J. 17, 2296–2298 (2003).

    CAS  Google Scholar 

  88. Dianzani, C. et al. Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells. Br. J. Pharmacol. 148, 648–656 (2006).

    CAS  Google Scholar 

  89. Higaki, M. et al. Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis. 64, 1132–1136 (2005).

    CAS  Google Scholar 

  90. Sundstrom, J. B. et al. Magnetic resonance imaging of activated proliferating rhesus macaque T cells labeled with superparamagnetic monocrystalline iron oxide nanoparticles. J. Acquir. Immune Defic. Syndr. 35, 9–21 (2004).

    CAS  Google Scholar 

  91. Putman, E., van der Laan, J. W. & van Loveren, H. Assessing immunotoxicity: guidelines. Fundam. Clin. Pharmacol. 17, 615–626 (2003).

    CAS  Google Scholar 

  92. Putman, E. et al. Assessment of the immunotoxic potential of human pharmaceuticals: a workshop report. Drug Inf. Journal 36, 417–427 (2002).

    Google Scholar 

  93. Snodin, D. J. Regulatory immunotoxicology: does the published evidence support mandatory nonclinical immune function screening in drug development? Regul. Toxicol. Pharmacol. 40, 336–355 (2004).

    CAS  Google Scholar 

  94. Haley, P. J. Guidelines on immunotoxicity testing of new chemical entities; consideration of a conundrum. Newsletter of the Society of Toxicology 3–5 (Fall, 2002).

    Google Scholar 

  95. Dean, J. H., Hincks, J. R. & Remandet, B. Immunotoxicology assessment in the pharmaceutical industry. Toxicol. Lett. 102–103, 247–255 (1998).

  96. Patri, A. K., Dobrovolskaia, M. A., Stern, S. T. & McNeil, S. E. in Nanotechnology for Cancer Therapy 105–138 (CRC Press, Boca Raton, 2006).

    Google Scholar 

  97. http://www.fda.gov/nanotechnology/

  98. http://ncl.cancer.gov

  99. http://www.astm.org

  100. http://www.iso.org

  101. http://online.factsandcomparisons.com/index.aspx/

  102. http://www.fda.gov/cder/foi/

  103. Sharma, R. et al. Safety profile of ultrasmall superparamagnetic iron oxide ferumoxtran-10: phase II clinical trial data. J. Magn. Reson. Imaging 9, 291–294 (1999).

    CAS  Google Scholar 

  104. Enochs, W. S., Harsh, G., Hochberg, F. & Weissleder, R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging 9, 228–232 (1999).

    CAS  Google Scholar 

  105. Paciotti, G. F. et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169–183 (2004).

    CAS  Google Scholar 

  106. Unger, E. C. et al. Nanoparticle drug delivery systems The Drug Delivery Companies Report 2001/02 61–63 (2001).

    Google Scholar 

  107. http://ncl.cancer.gov/120406.pdf

  108. Gao, X. et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Nancy Rice, Serguei Kozlov, Banu Zolnik, Jennifer Hall and Anil Patri for helpful discussion and suggestions. We are grateful to Allen Kane for assistance with illustrations. This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Dobrovolskaia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrovolskaia, M., McNeil, S. Immunological properties of engineered nanomaterials. Nature Nanotech 2, 469–478 (2007). https://doi.org/10.1038/nnano.2007.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing