Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome

Abstract

Several studies have reported functional improvement after transplantation of neural stem cells into injured spinal cord. We now provide evidence that grafting of adult neural stem cells into a rat thoracic spinal cord weight-drop injury improves motor recovery but also causes aberrant axonal sprouting associated with allodynia-like hypersensitivity of forepaws. Transduction of neural stem cells with neurogenin-2 before transplantation suppressed astrocytic differentiation of engrafted cells and prevented graft-induced sprouting and allodynia. Transduction with neurogenin-2 also improved the positive effects of engrafted stem cells, including increased amounts of myelin in the injured area, recovery of hindlimb locomotor function and hindlimb sensory responses, as determined by functional magnetic resonance imaging. These findings show that stem cell transplantation into injured spinal cord can cause severe side effects and call for caution in the consideration of clinical trials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological characterization of engrafted cells.
Figure 2: Functional recovery of rats treated with vehicle, NSCs or Ngn2-NSCs.
Figure 3: Functional MRI during stimulation of hindpaws.
Figure 4: Rats engrafted with NSCs develop allodynia-like responses in unaffected forepaws.
Figure 5: Grafting of NSCs induces sprouting of nerve fibers rostral to the injury.

Similar content being viewed by others

References

  1. Cajal, S.R.Y. Degeneration and Regeneration of the Nervous System. (Oxford University Press, London, 1928).

    Google Scholar 

  2. Christensen, M.D. & Hulsebosch, C.E. Chronic central pain after spinal cord injury. J. Neurotrauma 14, 517–537 (1997).

    Article  CAS  Google Scholar 

  3. Cairns, D.M., Adkins, R.H. & Scott, M.D. Pain and depression in acute traumatic spinal cord injury: origins of chronic problematic pain? Arch. Phys. Med. Rehabil. 77, 329–35 (1996).

    Article  CAS  Google Scholar 

  4. Bunge, R.P., Puckett, W.R. & Hiester, E.D. Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv. Neurol. 72, 305–315 (1997).

    CAS  PubMed  Google Scholar 

  5. Waxman, S.G. Demyelination in spinal cord injury. J. Neurol. Sci. 91, 1–14 (1989).

    Article  CAS  Google Scholar 

  6. McDonald, J.W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

    Article  CAS  Google Scholar 

  7. Hofstetter, C.P. et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA 99, 2199–2204 (2002).

    Article  CAS  Google Scholar 

  8. Ogawa, Y. et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. 69, 925–933 (2002).

    Article  CAS  Google Scholar 

  9. Vroemen, M., Aigner, L., Winkler, J. & Weidner, N. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur. J. Neurosci. 18, 743–751 (2003).

    Article  Google Scholar 

  10. Lu, P., Jones, L.L., Snyder, E.Y. & Tuszynski, M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 181, 115–129 (2003).

    Article  CAS  Google Scholar 

  11. Akiyama, Y. et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp. Neurol. 167, 27–39 (2001).

    Article  CAS  Google Scholar 

  12. Hao, J., Ebendal, T., Xu, X., Wiesenfeld-Hallin, Z. & Eriksdotter Jonhagen, M. Intracerebroventricular infusion of nerve growth factor induces pain-like response in rats. Neurosci. Lett. 286, 208–212 (2000).

    Article  CAS  Google Scholar 

  13. Jubran, M. & Widenfalk, J. Repair of peripheral nerve transections with fibrin sealant containing neurotrophic factors. Exp. Neurol. 181, 204–212 (2003).

    Article  CAS  Google Scholar 

  14. Eriksdotter Jonhagen, M. et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 9, 246–257 (1998).

    Article  CAS  Google Scholar 

  15. Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413 (2001).

    Article  CAS  Google Scholar 

  16. Sun, Y. et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376 (2001).

    Article  CAS  Google Scholar 

  17. Spenger, C. et al. Functional MRI at 4.7 tesla of the rat brain during electric stimulation of forepaw, hindpaw, or tail in single- and multislice experiments. Exp. Neurol. 166, 246–253 (2000).

    Article  CAS  Google Scholar 

  18. Hofstetter, C.P., Schweinhardt, P., Klason, T., Olson, L. & Spenger, C. Numb rats walk - a behavioural and fMRI comparison of mild and moderate spinal cord injury. Eur. J. Neurosci. 18, 3061–3068 (2003).

    Article  Google Scholar 

  19. Coumans, J.V. et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J. Neurosci. 21, 9334–9344 (2001).

    Article  CAS  Google Scholar 

  20. Bradbury, E.J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  CAS  Google Scholar 

  21. Olson, L. Regeneration in the adult central nervous system: experimental repair strategies. Nat. Med. 3, 1329–1335 (1997).

    Article  CAS  Google Scholar 

  22. Pearse, D.D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616 (2004).

    Article  CAS  Google Scholar 

  23. Bareyre, F.M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269–277 (2004).

    Article  CAS  Google Scholar 

  24. Brown, A., Ricci, M.J. & Weaver, L.C. NGF message and protein distribution in the injured rat spinal cord. Exp. Neurol. 188, 115–127 (2004).

    Article  CAS  Google Scholar 

  25. Averill, S., McMahon, S.B., Clary, D.O., Reichardt, L.F. & Priestley, J.V. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7, 1484–1494 (1995).

    Article  CAS  Google Scholar 

  26. Christensen, M.D. & Hulsebosch, C.E. Spinal cord injury and anti-NGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat. Exp. Neurol. 147, 463–475 (1997).

    Article  CAS  Google Scholar 

  27. Hokfelt, T. et al. Calcitonin gene-related peptide in the brain, spinal cord, and some peripheral systems. Ann. NY Acad. Sci. 657, 119–134 (1992).

    Article  CAS  Google Scholar 

  28. Willis, W.D. & Coggeshall, R.E. Sensory Mechanisms of the Spinal Cord. (Plenum, New York, 1991).

    Book  Google Scholar 

  29. Bennett, A.D., Chastain, K.M. & Hulsebosch, C.E. Alleviation of mechanical and thermal allodynia by CGRP(8–37) in a rodent model of chronic central pain. Pain 86, 163–175 (2000).

    Article  CAS  Google Scholar 

  30. Tomita, K., Moriyoshi, K., Nakanishi, S., Guillemot, F. & Kageyama, R. Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J. 19, 5460–5472 (2000).

    Article  CAS  Google Scholar 

  31. Guillemot, F. Vertebrate bHLH genes and the determination of neuronal fates. Exp. Cell Res. 253, 357–364 (1999).

    Article  CAS  Google Scholar 

  32. Zirlinger, M., Lo, L., McMahon, J., McMahon, A.P. & Anderson, D.J. Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proc. Natl. Acad. Sci. USA 99, 8084–8089 (2002).

    Article  CAS  Google Scholar 

  33. Blight, A.R. & Young, W. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J. Neurol. Sci. 91, 15–34 (1989).

    Article  CAS  Google Scholar 

  34. Gensert, J.M. & Goldman, J.E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 (1997).

    Article  CAS  Google Scholar 

  35. Griffiths, I.R. & McCulloch, M.C. Nerve fibres in spinal cord impact injuries. Part 1. Changes in the myelin sheath during the initial 5 weeks. J. Neurol. Sci. 58, 335–349 (1983).

    Article  CAS  Google Scholar 

  36. Nashmi, R. & Fehlings, M.G. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 104, 235–251 (2001).

    Article  CAS  Google Scholar 

  37. Franklin, R.J., Gilson, J.M. & Blakemore, W.F. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J. Neurosci. Res. 50, 337–344 (1997).

    Article  CAS  Google Scholar 

  38. Bambakidis, N.C. & Miller, R.H. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J. 4, 16–26 (2004).

    Article  Google Scholar 

  39. Utzschneider, D.A., Archer, D.R., Kocsis, J.D., Waxman, S.G. & Duncan, I.D. Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. Proc. Natl. Acad. Sci. USA 91, 53–57 (1994).

    Article  CAS  Google Scholar 

  40. Johansson, C.B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  Google Scholar 

  41. Falk, A. et al. Gene delivery to adult neural stem cells. Exp. Cell Res. 279, 34–39 (2002).

    Article  CAS  Google Scholar 

  42. Bregman, B.S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).

    Article  CAS  Google Scholar 

  43. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1–21 (1995).

    Article  CAS  Google Scholar 

  44. Behrmann, D.L., Bresnahan, J.C., Beattie, M.S. & Shah, B.R. Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis. J. Neurotrauma 9, 197–217 (1992).

    Article  CAS  Google Scholar 

  45. Gale, K., Kerasidis, H. & Wrathall, J.R. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp. Neurol. 88, 123–134 (1985).

    Article  CAS  Google Scholar 

  46. Hargreaves, K., Dubner, R., Brown, F., Flores, C. & Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77–88 (1988).

    Article  CAS  Google Scholar 

  47. Gundersen, H.J. Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J. Microsc. 143, 3–45 (1986).

    Article  CAS  Google Scholar 

  48. Mouton, P.R., Gokhale, A.M., Ward, N.L. & West, M.J. Stereological length estimation using spherical probes. J. Microsc. 206, 54–64 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Lindqvist, K. Pernold and K. Lundströmer for outstanding technical assistance. This study was supported by grants from AMF, the Swedish Research Council, the Karolinska Institute, the Swedish Cancer Society, the Tobias Foundation, the Göran Gustafsson Foundation, the US Public Health Service, the European Union and the Foundation for Strategic Research. S.K. was supported by a Van Wagenen fellowship from the AANS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph P Hofstetter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Immunohistochemical detection of Ngn2 two weeks following grafting. (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofstetter, C., Holmström, N., Lilja, J. et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8, 346–353 (2005). https://doi.org/10.1038/nn1405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing