Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots

Abstract

The importance of locating proteins in their context within cells has been heightened recently by the accomplishments in molecular structure and systems biology. Although light microscopy (LM) has been extensively used for mapping protein localization, many studies require the additional resolution of the electron microscope. Here we report the application of small nanocrystals (Quantum dots; QDs) to specifically and efficiently label multiple distinct endogenous proteins. QDs are both fluorescent and electron dense, facilitating their use for correlated microscopic analysis. Furthermore, QDs can be discriminated optically by their emission wavelength and physically by size, making them invaluable for multilabeling analysis. We developed pre-embedding labeling criteria using QDs that allows optimization at the light level, before continuing with electron microscopy (EM). We provide examples of double and triple immunolabeling using light, electron and correlated microscopy in rat cells and mouse tissue. We conclude that QDs aid precise high-throughput determination of protein distribution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction to QDs.
Figure 2: Application of QDs for multiprotein EM in cultured cells.
Figure 3: Correlated LM-EM of multiple proteins in cultured cells.
Figure 4: Double and triple labeling of proteins for LM and EM imaging in tissue.
Figure 5: Penetration of QD655-conjugated antibodies versus 5-nm gold-conjugated antibodies.

Similar content being viewed by others

References

  1. Anderson, K.D., Karle, E.J. & Reiner, A. A pre-embedding triple-label electron microscopic immunohistochemical method as applied to the study of multiple inputs to defined tegmental neurons. J. Histochem. Cytochem. 42, 49–56 (1994).

    Article  CAS  Google Scholar 

  2. Nisman, R., Dellaire, G., Ren, Y., Li, R. & Bazett-Jones, D.P. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem. 52, 13–18 (2004).

    Article  CAS  Google Scholar 

  3. Takizawa, T., Suzuki, K. & Robinson, J.M. Correlative microscopy using FluoroNanogold on ultrathin cryosections. Proof of principle. J. Histochem. Cytochem. 46, 1097–1102 (1998).

    Article  CAS  Google Scholar 

  4. Shiao, Y.H., Resau, J.H., Nagashima, K., Anderson, L.M. & Ramakrishna, G. The von Hippel-Lindau tumor suppressor targets to mitochondria. Cancer Res. 60, 2816–2819 (2000).

    CAS  PubMed  Google Scholar 

  5. Deerinck, T.J. et al. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910 (1994).

    Article  CAS  Google Scholar 

  6. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  Google Scholar 

  7. Chan, W.C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  8. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  9. Han, M., Gao, X., Su, J.Z. & Nie, S. Quantum dot–tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  10. Chan, W.C. et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).

    Article  CAS  Google Scholar 

  11. Voura, E.B., Jaiswal, J.K., Mattoussi, H. & Simon, S.M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10, 993–998 (2004).

    Article  CAS  Google Scholar 

  12. Grecco, H.E. et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc. Res. Tech. 65, 169–179 (2004).

    Article  CAS  Google Scholar 

  13. Liu, C., Miller, P.D., Henstrom, W.L. & Gibson, J.M. Transmission electron microscopy of semiconductor quantum dots. J. Microsc. 199, 130–140 (2000).

    Article  CAS  Google Scholar 

  14. Herve, J.C., Bourmeyster, N. & Sarrouilhe, D. Diversity in protein-protein interactions of connexins: emerging roles. Biochim. Biophys. Acta 1662, 22–41 (2004).

    Article  CAS  Google Scholar 

  15. Giepmans, B.N. Gap junctions and connexin-interacting proteins. Cardiovasc. Res. 62, 233–245 (2004).

    Article  CAS  Google Scholar 

  16. Humbel, B.M., de Jong, M.D., Muller, W.H. & Verkleij, A.J. Pre-embedding immunolabeling for electron microscopy: an evaluation of permeabilization methods and markers. Microsc. Res. Tech. 42, 43–58 (1998).

    Article  CAS  Google Scholar 

  17. Martone, M.E., Deerinck, T.J., Yamada, N., Bushong, E. & Ellisman, M.H. Correlated 3D light and electron microscopy: use of high voltage electron microscopy and electron tomography for imaging large biological structures. J. Histotechnology 23, 261–270 (2000).

    Article  Google Scholar 

  18. Phend, K.D., Rustioni, A. & Weinberg, R.J. An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J. Histochem. Cytochem. 43, 283–292 (1995).

    Article  CAS  Google Scholar 

  19. Horisberger, M. & Vauthey, M. Labelling of colloidal gold with protein. A quantitative study using β-lactoglobulin. Histochemistry 80, 13–18 (1984).

    Article  CAS  Google Scholar 

  20. Mansson, A. et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun. 314, 529–534 (2004).

    Article  CAS  Google Scholar 

  21. Hanaki, K. et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun. 302, 496–501 (2003).

    Article  CAS  Google Scholar 

  22. Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002).

    Article  CAS  Google Scholar 

  23. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  24. Jain, R.K. & Stroh, M. Zooming in and out with quantum dots. Nat. Biotechnol. 22, 959–960 (2004).

    Article  CAS  Google Scholar 

  25. Bobik, M., Ellisman, M.H., Rudy, B. & Martone, M.E. Potassium channel subunit Kv3.2 and the water channel aquaporin-4 are selectively localized to cerebellar pinceau. Brain Res. 1026, 168–178 (2004).

    Article  CAS  Google Scholar 

  26. Lidke, D.S. et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22, 198–203 (2004).

    Article  CAS  Google Scholar 

  27. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  28. Tour, O., Meijer, R.M., Zacharias, D.A., Adams, S.R. & Tsien, R.Y. Genetically targeted chromophore-assisted light inactivation. Nat. Biotechnol. 21, 1505–1508 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.Y. Tsien for encouragement and support as well as H. Hakozaki for light microscopy assistance, M.E. Martone for editorial assistance, R.L. Ornberg (Quantum Dot Corporation) for providing QDs and T. Sudhof for providing the IP3R antibody. This work was supported by grants from the US National Institutes of Health to M.H.E. and R.Y. Tsien: NIH-RR04050, NIH-NS27177, NIH-1P20-GM72033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H Ellisman.

Ethics declarations

Competing interests

Quantum Dot Corporation (Hayward, California) supplied QD conjugates and reimbursed a meeting attendance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giepmans, B., Deerinck, T., Smarr, B. et al. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat Methods 2, 743–749 (2005). https://doi.org/10.1038/nmeth791

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth791

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing