Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase

Abstract

We report a highly specific, robust and rapid new method for labeling cell surface proteins with biophysical probes. The method uses the Escherichia coli enzyme biotin ligase (BirA), which sequence-specifically ligates biotin to a 15-amino-acid acceptor peptide (AP). We report that BirA also accepts a ketone isostere of biotin as a cofactor, ligating this probe to the AP with similar kinetics and retaining the high substrate specificity of the native reaction. Because ketones are absent from native cell surfaces, AP-fused recombinant cell surface proteins can be tagged with the ketone probe and then specifically conjugated to hydrazide- or hydroxylamine-functionalized molecules. We demonstrate this two-stage protein labeling methodology on purified protein, in the context of mammalian cell lysate, and on epidermal growth factor receptor (EGFR) expressed on the surface of live HeLa cells. Both fluorescein and a benzophenone photoaffinity probe are incorporated, with total labeling times as short as 20 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Site-specific protein labeling using biotin ligase and a ketone analog of biotin.
Figure 2: BirA-catalyzed ligation of ketone 1 to the AP.
Figure 3: Labeling of recombinant CFP-AP with fluorescein hydrazide.
Figure 4: Site-specific labeling of proteins expressed on the surface of live HeLa cells with BP.

Similar content being viewed by others

References

  1. Keppler, A., Pick, H., Arrivoli, C., Vogel, H. & Johnsson, K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl. Acad. Sci. USA 101, 9955–9959 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller, L.W., Sable, J., Goelet, P., Sheetz, M.P. & Cornish, V.W. Methotrexate conjugates: a molecular in vivo protein tag. Angew. Chem. Int. Edn. Engl. 43, 1672–1675 (2004).

    Article  CAS  Google Scholar 

  3. Marks, K.M., Braun, P.D. & Nolan, G.P. A general approach for chemical labeling and rapid, spatially controlled protein inactivation. Proc. Natl. Acad. Sci. USA 101, 9982–9987 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J. Am. Chem. Soc. 126, 8896–8897 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Yin, J., Liu, F., Li, X. & Walsh, C.T. Labeling proteins with small molecules by site-specific posttranslational modification. J. Am. Chem. Soc. 126, 7754–7755 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Marks, K.M., Rosinov, M. & Nolan, G.P. In vivo targeting of organic calcium sensors via genetically selected peptides. Chem. Biol. 11, 347–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Guignet, E.G., Hovius, R. & Vogel, H. Reversible site-selective labeling of membrane proteins in live cells. Nat. Biotechnol. 22, 440–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, I. & Ting, A.Y. Site-specific labeling of proteins with small molecules in live cells. Curr. Opin. Biotech. (in the press).

  10. Beckett, D., Kovaleva, E. & Schatz, P.J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Boer, E. et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 100, 7480–7485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahal, L.K., Yarema, K.J. & Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Baraldi, P.G. et al. Synthesis of sulfur-containing carbaprostacyclin analogs. Gazz. Chim. Ital. 114, 177–183 (1984).

    CAS  Google Scholar 

  14. Lavielle, S., Bory, S., Moreau, B., Luche, M.J. & Marquet, A. Total synthesis of biotin based on stereoselective alkylation of sulfoxides. J. Am. Chem. Soc. 100, 1558–1563 (1978).

    Article  CAS  Google Scholar 

  15. Chapman-Smith, A., Morris, T.W., Wallace, J.C. & Cronan, J.E., Jr. Molecular recognition in a post-translational modification of exceptional specificity. Mutants of the biotinylated domain of acetyl-CoA carboxylase defective in recognition by biotin protein ligase. J. Biol. Chem. 274, 1449–1457 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Nauman, D.A. & Bertozzi, C.R. Kinetic parameters for small-molecule drug delivery by covalent cell surface targeting. Biochim. Biophys. Acta 1568, 147–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Lax, I. et al. Epidermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. A low resolution projection structure of the ligand-binding domain. J. Biol. Chem. 266, 13828–13833 (1991).

    CAS  PubMed  Google Scholar 

  18. Brock, R., Hamelers, I.H. & Jovin, T.M. Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. Cytometry 35, 353–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Reynolds, A.R., Tischer, C., Verveer, P.J., Rocks, O. & Bastiaens, P.I. EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol. 5, 447–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Z. et al. A new strategy for the site-specific modification of proteins in vivo. Biochemistry 42, 6735–6746 (2003).

    CAS  PubMed  Google Scholar 

  21. Huff, T. et al. Thymosin β(4) serves as a glutaminyl substrate of transglutaminase. Labeling with fluorescent dansylcadaverine does not abolish interaction with G-actin. FEBS Lett 464, 14–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Dutton, A. & Singer, S.J. Crosslinking and labeling of membrane proteins by transglutaminase-catalyzed reactions. Proc. Natl. Acad. Sci. USA 72, 2568–2571 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mao, H., Hart, S.A., Schink, A. & Pollok, B.A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 126, 2670–2671 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by the US National Institutes of Health (K22-HG002671-01), EJLB Foundation and Massachusetts Institute of Technology. I.C. was supported by a National Science Foundation predoctoral fellowship and a Wyeth Pharmaceuticals fellowship, and M.H. was supported by an MIT-Merck postdoctoral fellowship. We thank Tanabe USA for biotin, D. Beckett for the BirA plasmid and helpful advice, K.D. Wittrup for the EGFR plasmid, J.M. Baskin, E. McNeill and K.H. Riesenburger for assistance, and J.E. Wilson and G.C. Fu for use of their chiral HPLC. We also thank S.S. Licht and R.Y. Tsien for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Y Ting.

Ethics declarations

Competing interests

Massachusetts Institute of Technology is seeking to file a patent application covering part of the information contained in the paper.

Supplementary information

Supplementary Fig. 1

Comparison of our labeling method (ketone 1 followed by FH) to antibody detection (anti-pentahistidine mouse monoclonal followed by fluorescein-conjugated secondary antibody) for visualization of CFP-AP in lysate. (PDF 88 kb)

Supplementary Fig. 2

Analysis of the effect of the AP tag on EGFR distribution and function. (PDF 4787 kb)

Supplementary Methods (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, I., Howarth, M., Lin, W. et al. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2, 99–104 (2005). https://doi.org/10.1038/nmeth735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing