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Abstract

The Oxford Nanopore MinION sequences DNA by sensing changes in electrical current flow in 

real-time as molecules traverse nanopores. Optionally, the voltage across specific nanopores can 

be reversed, ejecting the DNA molecule. This enables “Read Until”, the selection of specific DNA 

molecules for sequencing. We use dynamic time warping to match reads to reference, selecting 

regions of small genomes, individual amplicons, or normalization of the amplicon set. This first 

demonstration of direct selection of specific DNA molecules in real-time enables many novel 

future applications.

Nanopore sequencing, represented by Oxford Nanopore Technologies (ONT) MinION 

sequencer, enables a new paradigm for real-time analysis1. MinION reads are electrical 

current measurements with values determined by the specific DNA bases in contact with the 

nanopore (Supplementary Fig. 1). Uniquely the sequencer streams current values from 

individual nanopores as DNA molecules pass through, enabling analysis of current traces 

during sequencing. The MinION streams data from all channels simultaneously, with each 

channel individually addressable and able to reverse the voltage across its pore, rejecting the 

read. In principle this enables selective sequencing. Molecules sampled by the sequencer can 

be either sequenced to completion or rejected and an alternative molecule sampled. Rejected 

reads are unlikely to be sequenced again as the motor protein required for sequencing will 

already have migrated along the DNA2–4. This type of approach has been described, but not 

yet applied, by Oxford Nanopore and named “Read Until”.

To maximize selective sequencing, identification must be accomplished before the read 

completes. This depends on two parameters. Firstly, speed of sequence identification and 

placement on the reference and secondly, average read length of the library. Read length is 

limited by input material, with mapped reads reported exceeding 100 kb5. “Read Until” 
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requires matching the shortest fragment of the longest possible read to a specific position 

within the reference. However, implementation of “Read Until” is complicated by the fact 

that sequence data streamed by the device is a current squiggle, not a decoded sequence of 

bases. To date there are no publicly available methods for matching squiggle data directly to 

a reference.

One approach to “Read Until” would be base calling read fragments, but current 

implementations are too slow and benefit from subsequent optimizations to maximize base 

call quality1,6–8. Therefore, we focused on matching current data directly to a reference 

sequence in squiggle space. The matching of squiggles shares much in common with 

comparison of audio signals and so we turned to dynamic time warping (DTW), an 

algorithm first applied to the matching of speech9,10. Guaranteed to find the optimal 

alignment of two series of time-ordered data, DTW has been previously used in analysis of 

sequence data11.

We use DTW to match observed short squiggles to a reference in real-time, manipulating the 

output from the sequencer to demonstrate selective sequencing on the MinION. We apply 

this approach to two problems. The selection of specific regions from a whole genome 

library of Lambda and the selective sequencing of individual amplicons from a pooled set of 

molecules to provide efficient coverage balancing, motivated by recent field experiments 

with Ebola12. All methods and scripts are freely available under the MIT license from 

https://github.com/mattloose/RUscripts including methods for post processing reads after 

sequencing is complete. Jupyter notebooks for figures are also available at https://

github.com/mattloose/RUFigs. All read data are available from the European Nucleotide 

Archive (Supplementary Table 1). The API required for addressing the sequencer is 

available directly from Oxford Nanopore Technologies on request.

Matching fragments of read to a reference requires converting the reference to a hypothetical 

current trace. The appropriate model can be extracted from a base called MinION FAST5 

file, and an expected squiggle calculated for a reference sequence (Supplementary Fig. 1, 

Supplementary Table 2). Given two perfect squiggles it is possible to match one to another 

by visual inspection. This process is complicated by the sequencing environment including 

voltage changes, noise and interactions between channels. These behaviors are captured by 

three variables: shift, scale and drift, which together describe the variation between pores 

and the underlying model (Supplementary Fig. 2). The base caller provided by ONT most 

likely calculates these values using expectation-maximization but derives the data to do so 

from the entire read8. For short nanopore reads z-score normalisation can be used which 

overcomes shift and scale, but not drift. Based on examination of these parameters drift is 

insignificant and so we z-score normalized both reference and incoming read fragments. 

Raw current traces from nanopores are subdivided into events, representing specific DNA 

sequences within the pore, and errors in event detection resulting in event insertions/

deletions for identical molecules (Supplementary Fig. 1)8. DTW subsequence search 

compensates for residual differences in signal between read and reference and potential 

insertions/deletions in events measuring similarity between temporal sequences varying in 

amplitude or speed10,11.
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Using synthetic data any 8mer squiggle from lambda can be correctly mapped with DTW 

(Supplementary Fig. 3). On real data longer query sequences are required presumably due to 

noise. Without normalization, only 40% of data can be mapped correctly. This is improved 

by z-score normalization and match length. The naive DTW algorithm has O(m×n) 

complexity where m is reference length and n query length. Reducing query length will 

improve search time. We chose 250 events as a balance between speed and accuracy, 

matching 1 read every 0.3 seconds on a single compute core. Over 8 cores, 512 channels 

were processed in 19.2s suggesting “Read Until” could be attainable using DTW. At current 

sequencing speeds (70 b/s) 250 events represents 3.5 seconds data collection.

We developed “Read Until” applications using lambda DNA; target enrichment and 

amplicon sequencing (Supplementary Fig. 4). Lambdas small genome size (48,502 bp) 

results in a total search space of just 97,004 bp. We enriched two 5kb regions, from 10-15 kb 

and 30-35 kb, rejecting all other reads. As an internal control, we applied “Read Until” on 

even numbered channels only. Adjacent channels sample reads from the same pool of 

molecules allowing for a direct comparison. We sequenced for 47 hours at 30 b/s generating 

31,609 reads of which 8,901 were 2D and 8,178 alignable to the reference giving a mean 

coverage of 840×. Considering all channels, two peaks are observed correlating with the 

target regions (Fig. 1A). Splitting these data into odd and even channels reveals even 

channels rejecting reads mapping outside the target regions. In contrast, reads from the 

entire genome are found within the odd channels. The peak correlates with the mean 2D 

read length at 5 kb. For comparison, we simulated this experiment using ideal data and 

uniform long reads revealing sub optimal enrichment in our experiment (Fig. 1B, 

Supplementary Fig. 5). One contributing factor is likely to be variation in read lengths seen 

in the real library compared with simulation. Repeating these experiments using 70 b/s 

SQK6 chemistry, selecting for reads from 10-15 kb and 35-40 kb, shows the same result 

(Fig. 1C). To validate our ability to be selective we switched approach on this flowcell, 

running “Read Until” on all channels selecting reads mapping within 15-25 kb (Fig. 1D).

This illustrates one use for “Read Until”: regions can be prioritized until a specific goal has 

been achieved, then switch to a second experiment analyzing alternative regions from the 

same library. To process data fast enough these experiments were run using 22 cores 

(Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz) on a separate server. With refactored code 

this experiment can be repeated using only 8 cores, processing each read within 

approximately 250 bases of the data being available to process (i.e. a total sequence of 550 

bases, Supplementary Fig. 6).

The speed of match by DTW is constrained by reference length9. In theory, DTW can be 

applied to genomes up to 5Mb in length although this requires more compute cores than 

available on a laptop, with 8 cores required to process 64 channels, suggesting 64 cores 

would be required for a maximally efficient 512 channel flowcell (Supplementary Fig. 6). 

Hence, we focus on amplicon sequencing on the MinION, with a resulting smaller search 

space. This approach is ideally suited to the device; the first major field study to use the 

MinION exploited this to rapidly sequence amplicons from the 19 kB Ebola genome13. 

However, this requires adequate coverage of every amplicon with as little sequencing as 
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necessary to minimize the resource required and volume of data to transfer for subsequent 

analysis.

Several optimizations are possible for amplicon matching with “Read Until”. Removing 

sequence not from the start or end of an amplicon results in a shorter reference squiggle and 

increase in matching speed. As minION sequencing is 5”-3”, the effective reference can be 

halved by removing unnecessary complement sequence. Using a 900 bp window around the 

start sites for an 11 amplicon approach reduces the reference to 19,800 events from 38,000 

(Supplementary Fig. 7). This approach scales to larger genomes since the search space 

depends on amplicon number, not genome size.

Sequencing Ebola in a lab environment is limited by safety. We therefore used 11 amplicons 

spanning 22kb of the lambda genome (Supplementary Table 3). Individual amplicons were 

pooled prior to library preparation at approximately equimolar concentrations and libraries 

prepared following Quick et al1,12. We performed multiple short duration runs to select for 

specific amplicons. Fig. 2A shows a control 20 minute run without “Read Until” generating 

3,657 reads of which 1,671 were 2D. All 11 amplicons were found, although at different 

levels. We then applied “Read Until” to exclude even numbered amplicons (Fig. 2B). This 

was successful, although leakage was observed on rejected amplicons as had been seen with 

the whole genome selection. Two subsequent repeats of this experiment show significantly 

improved performance and clear rejection (Supplementary Fig. 8). We then selected the 

inverse amplicons, successfully blocking sequencing of odd numbered amplicons (Fig. 2C). 

The “peaks” of template coverage visible correspond to rejected reads, the initial bases of 

which become template only short reads.

Misplaced reads were characterized by sorting squiggles into individual amplicon groups 

using DTW. Subsequent alignment of base called data to the reference demonstrates sorting 

is accurate, although a small proportion of reads are misplaced (Supplementary Fig. 9). This 

suggests DTW extracts informative matching data as compared with base calling followed 

by mapping.

An obvious application is ensuring uniform or minimal coverage over each amplicon. 

Challenges include read counting and overcoming sources of latency within the system. 

From observation, the MinION generates read starts which do not result in read data being 

written to disk. These may represent short reads, or non DNA material blocking a pore. 

Furthermore, reads which have been matched may not include hairpin sequence resulting in 

only a template and not a 2D read. It is not sufficient to keep track of the observed read starts 

from the sequencer, it is also necessary to monitor reads written to disk. We therefore track 

reads from initial signal from the sequencer through to the hard disk. An additional 

complication resulted from minKnow (the software controlling the minION) buffering 

writing of reads to disk. This lag introduces a delay between reads completing translocation 

through the pore and the data being available on disk for analysis.

We tested “Read Until” in real-time by obtaining uniform 2D coverage of our 11 amplicon 

library. 10 minutes of sequencing without “Read Until” showed differential coverage of each 

amplicon (Fig. 3A). We then restarted the run with normalization and rejected reads once 
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that amplicon had crossed a specified threshold, aiming for at least 200× coverage of each. 

The “Read Until” script automatically stops the sequencer when set coverage thresholds are 

surpassed, here after 48 minutes (Fig. 3A). Once base called, the 2D coverage exceeds 200×; 

consistent with latency within the system rather than leakiness in blocking of individual 

amplicons and confirmed by investigating mean coverage depth in 1 minute intervals over 

the run (Fig. 3B, Supplementary Fig. 10). Amplicons with high coverage in the library are 

rejected first (2,3,5,8,10 and 11), whilst those with lowest coverage continue sequencing (see 

amplicons 4 and 7). Fig. 3B presents example dynamics observed for each amplicon type. 

Amplicon 3 accumulates 2D reads for 20 minutes but then rejects all reads. Amplicon 4 

accumulates 2D reads at a steady rate until 20 minutes at which point sequencing rate 

increases. This is due to increased sequencing capacity available for Amplicon 4 as other 

amplicon coverage thresholds are reached (~350× 2D sequencing). Amplicon 6 follows a 

similar trajectory although reaching its peak later around 35 minutes.

Extrapolating from the first 15 minutes of data allows comparison between the observed 

levels of coverage and the expected coverage depth after 48 minutes without “Read Until” 

applied (Fig. 3C). The time taken for all amplicons to exceed 200× coverage without “Read 

Until” can also be calculated: 105 minutes with unnecessary reads slowing subsequent 

analysis. Simulating these experiments using a library with a 10 fold range of input 

amplicons and aiming to reach 100× coverage shows that “Read Until” reaches the target 

coverage in one third the time taken otherwise (Supplementary Fig 11). Increasing the 

variance in the input library to 50 fold results in a 4 fold faster run.

This is the first demonstration of selective sequencing of specific molecules without prior 

enrichment during sample preparation. This approach, a basic application of DTW from the 

mlpy library, is surprisingly accurate14. Although the current implementation is not 

sufficiently fast for large genomes, the algorithm has the potential to be optimized both 

algorithmically, using a number of well described approaches including lower bounding, and 

computationally by exploiting parallel GPU or FPGA processors15,16. Any method for 

“Read Until”, regardless of genome size or complexity, must be able to match a single read 

within the reference faster than the read itself is generated. For 512 channels sequencing at 

300 b/s, a reasonable goal would be to place a read within 0.02 seconds allowing all 

channels to be processed within 10 seconds.

Exploiting the real-time nature of the minION, where reads are available for analysis 

immediately, has been shown by many groups13,17,18. Here we extend this to real-time 

analysis and selective sequencing on a MinION with “Read Until”, demonstrating this 

approach can be applied to amplicon sequencing. Given that reads only need map to a subset 

of the reference, amplicon based selective sequencing can be applied to genomes of any size 

and up to 50 amplicons on current fast laptops (Supplementary Fig. 11). The anticipated 

increasing speed of nanopore sequencing (“fast mode” at 300 b/s and beyond) and the 

scaling up of the MinION to 3,000 channels, and the PromethION with 144,000 channels, 

will challenge the implementation of “Read Until” in real-time and require algorithmic 

enhancements and computational power. Yet “Read Until” based approaches will enable new 

approaches to sequencing, such as exon sequencing without target capture, controlled depth 
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of coverage over entire genomes, counting applications for RNA seq and many applications 

that have yet to be imagined.

Online Methods

Library Preparation and Sequencing

Lambda whole genome libraries were prepared without PCR amplification according to the 

standard protocol using either version 5 or version 6 library preparation kits (ONT, SEQ-

MAP005 and SEQ-MAP006) supplied by Oxford Nanopore Technologies (ONT). This 

protocol has been extensively described by Ip et al1. Lambda amplicons were amplified 

using Platinum Taq DNA polymerase (Thermo Scientific Invitrogen, 10966018). Primers 

were designed to amplify eleven 2kb regions spanning 22 kb of the Lambda genome 

(reference strain sequence J02459.1) (see Supplementary Table 3). To prepare a mixed 

amplicon library, 5ul of each PCR reaction were pooled together followed by two rounds of 

Agencour Ampure XP purification (Beckman Coulter, A63881). This approach 

approximates that of Quick et al12 . Libraries were then prepared using ONT version 6 

library preparation kits (ONT, SEQ-MAP006) according to the instructions provided by 

ONT. Libraries were sequenced on both original (Fig. 1A) and Mk1 minIONs (all other 

data) using either FLO-MAP003 or FLO-MAP103 flow cells respectively. MinKNOW 

0.50.2.15 was used to control the minION device using the standard 48 hour run scripts, 

base calling was performed using the versions of Metrichor available at the time. The "Read 

Until" API version used was commit b4cd8e1.

Original read data corresponding to individual experiments are available for download with 

study accession PRJEB12567 from the ENA and are described in Supplementary Table 1.

Code availability

All code is freely available from https://github.com/mattloose/RUscripts with documentation 

at http://mattloose.github.io/RUscriptsdocs/.

Generation of a reference Squiggle

In order to squiggle match to a reference genome it is necessary to convert the nucleotide 

sequence to a squiggle. To do this, for each kmer in the reference we use the expected mean 

current value from the model file. So for the sequence:

ATGCGCGTAGCTGATCGATCG

with a 5mer model file we identify the following overlapping 5mers and assign the 

appropriate means for the first 6 positions as shown in Supplementary Table 2 which results 

in a squiggle sequence of:

64.0277060402, 74.1940612355, 72.5600759653, 76.3160881774, 66.6657142728, 

61.7330951621

For amplicon sequencing, the reference can be reduced by excluding sequences that do not 

occur at the start or end of the amplicon regions. This is the suggested running mode for 
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aReadUntil.py with the -c flag reducing the reference sequence to exclude those regions 

unlikely to appear in the start of individual reads.

““Read Until”” Implementation

Whilst sequencing was in progress, we applied ““Read Until”” using the ONT supplied 

““Read Until”” API. In the standard ONT workflow, read data are generated by the minION 

device under the control of the MinKNOW software and reads are written to a folder on the 

users hard drive. These reads are then processed by the Metrichor service to be basecalled 

and the basecalled files returned to a downloads folder. The raw files are moved to an 

uploads folder (Supplementary Fig. 4a). ““Read Until”” in its current form requires the user 

to run a second utility whilst minKNOW is running (Supplementary Fig. 4b). This program, 

ws_event_sampler.exe, streams event data from minKNOW as soon as they are received 

from the minION device to a second application which will process these data. This second 

application incorporates a specific API from ONT to communicate with 

ws_event_sampler.exe and send messages to and from the sequencer requesting reads to be 

rejected as appropriate. We provide two example applications here, namely gReadUntil.py 

(Supplementary Fig. 4 ci,ii) and aReadUntil.py (Supplementary Fig. 4 di,ii), for enriching 

genomic DNA regions or balancing amplicons respectively. These are implemented in 

python and are freely available from https://github.com/mattloose/RUscripts. 

ws_event_sampler.exe provides a useful simulation mode to stream example data for testing 

purposes and provided users have access to the “Read Until” API from ONT, can be used to 

test “Read Until” (Supplementary Fig. 4 cii, dii).

Detailed use of these scripts are provided in the documentation alongside the GitHub 

repository (http://mattloose.github.io/RUscriptsdocs/). Use of these scripts are described 

below. For live running, scripts require an API available from Oxford Nanopore and this 

varies dependent on the specific version of minKnow being used. We caution those 

interested in “Read Until” that the API and implementation are currently under development 

and thus subject to change. The code provided here currently works with all available 

versions of the “Read Until” API, but only MinKNOW versions 0.48.13-0.51.1.51. Versions 

of minKNOW from 0.51.3 onwards restore read until functionality. The authors welcome 

correspondence with anyone wishing to apply “Read Until” to resolve these issues during 

the early development phase of this technology.

It is important to note that each of these applications depend on the underlying model 

usually used to decode the sequence for base calling. We do not distribute this information, 

but rather provide an application, getmodels.py, which will extract the appropriate data from 

a previously base called file (Supplementary Fig. 4 e). DTW is obviously sensitive to the 

model being used and users should ensure they are using the most appropriate model for the 

chemistry in use. This utility exports model files with names based on the model being 

extracted. This means the script may overwrite a previously generated model file if the read 

contains the same model. Note that this script will only extract models from reads which 

have been base called using the Oxford Nanopore Technologies HMM base caller. No model 

is encoded in reads called with open source base callers or neural network derived 

approaches. This script should be run each time a chemistry change occurs, typically defined 
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by the introduction of a new nanopore by Oxford Nanopore. Note that reads called using a 

neural network based base caller will not contain a model file. The necessary model files 

may be obtained on request from Oxford Nanopore Technologies.

Additional scripts are provided for testing the ability of Dynamic Time Warping to sort reads 

without access to the ONT API (ampliconSPLIT.py), to simulate genome section 

(test_gReadUntil.py) and a utility to optimally sort amplicons from a run prior to base 

calling and allowing offline “balancing” of samples (ampbalance.py).

Dynamic Time Warping

Dynamic Time Warping (DTW) is a Dynamic Programming algorithm that is guaranteed to 

find the optimal alignment of two sequences of values. It has a "remarkable history of 

independent discovery and publication"9. We provide a brief summary of the algorithm but 

refer the reader to the extensive literature on this topic for additional information9,15. DTW 

is closely related to the Levenshtein Edit Distance for strings of discrete values19, to the 

Needleman–Wunsch algorithm used to align protein sequences20 and the Smith-Waterman 

algorithm21. Unlike DTW, these last two algorithms additionally employ substitution 

matrices and gap penalties in determining the cost of moves.

DTW Description—Let Q be a sequence of length m and R a sequence of length n where 

m maybe << n.

Let D be an m*n matrix of distances between elements of Q and R with D[i][j] = f(Q[i] , 
R[j]).

Here, distances may be defined using a range of metrics (f) such as Euclidean distance, 

squared Euclidean Distance, absolute difference or Manhattan distance.

The optimal alignment of Q and R is obtained by traversing D from D[m][i+m] to D[0][i] 
where 0 <= i <= n-m choosing, at each step, the lowest cost move; the cost of moving from 

D[i][j] to a neighbour D[g][h], with (g < i and h==j) or (g==i and h < j) or (g < i and h< j), is 

determined using a "cost" matrix (C).

The "cost" matrix C is an m*n matrix with the value of C[i][j] determined as follows:

(Eq. 1)

(Eq. 2)

(Eq. 3)
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(Eq. 4)

The basic DTW algorithm has a computational complexity of O(m*n) and the dynamic 

programming used to determine the cost matrix defeats simple automated vectorisation. 

Consequently, a number of variations that trade guarantees of optimality against 

performance have been suggested, for a thorough overview see the survey chapter from 

Müller15.

An important variation of DTW for searching for an alignment of a relatively small 

sequence within a much larger sequence, termed subsequence DTW (sDTW), as 

implemented in the mlpy DTW package, is used in the current work14. Essentially sDTW 

requires the following small change to Eq. 3 above:

(Eq. 3a)

As in https://github.com/lukauskas/mlpy/blob/master/mlpy/dtw/cdtw.c line 411. A detailed 

description is provided in Muller15.

Running ““Read Until””

The following section briefly describes the scripts and utilities found within the github code 

repository for this paper (https://github.com/mattloose/RUscripts). Fully worked examples 

are provided in the online documentation.

getmodels.py

All squiggle matching applications require a reference squiggle to match to. The script 

getmodels.py extracts the required data to do so from a base called minION read. This script 

provides the model files that are required for all the “Read Until” applications described 

here. The model in use by ONT to describe minION data is updated frequently and people 

should use a read derived from the chemistry and sequencing speed they are actually using 

for sequencing. getmodels.py outputs two files, a model for the template and a model for the 

complement. For ““Read Until”” it is the template model that is used. The script will also 

output the kmer length in the model and the structure of the file for reference. Note that for 

simulated runs using ws_event_sampler.exe the model file used by the simulator should be 

used by the "Read Until" scripts.

ampliconSPLIT.py

ampliconSPLIT.py simulates the separation of read data into individual amplicons and can 

be run on read files pre or post basecalling. The script will process read files, sorting them 

into individual amplicons and placing them in a subfolder for each amplicon. This script 

provides a method of testing the ability of DTW to sort reads based on the template strand 

alone. Line 298 of the code sets the length of the read which is searched and its position 
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from the read. We take 250 events excluding the first 50 events of the read. The depth 

parameter can be used to limit the number of amplicons returned - this is a basic 

implementation of balancing. However, we recommend that for balancing of amplicons after 

a run is complete, the script ampbalance.py (described below) is used.

ampbalance.py

This script builds on the approaches taken for “Read Until” but also includes the 

complement model. The script will look within a read to identify the template and 

complement strands from the read, map both to a reference and then determine those reads 

most likely to give rise to a 2d read.

Live “Read Until” - gReadUntil.py and aReadUntil.py

Within the folder ReadUntil are two scripts, gReadUntil.py and aReadUntil.py. These 

require access to files from the “Read Until” API provided by Oxford Nanopore and not 

distributed here. All necessary dependencies for the “Read Until” API should be installed as 

specified by ONT. Note that changes to the API will most likely break our code as presented 

here. The API is an alpha release, is under current active development, and so the scripts 

cannot be guaranteed to work. Full instructions for running these scripts and installing the 

API are provided in the associated github repository.

General considerations

1 What to map—An important consideration for “Read Until” is which region and 

length of a prospective read you wish to map to a reference. Reads will begin with a leader 

sequence derived from the library preparation step which can influence the placement of a 

read on the reference. As the length of the sample from the read increases, the leader 

sequence relatively disrupts the mapping less. The “Read Until” API allows the user to 

specify the offset into a read from which events are sampled and the length of sequence 

which is sampled with an instruction in the form of:

setup_conditions = {"ignore_first_events": 50, "padding_length_events": 0, "events_length": 

250, "repetitions": 1}

These parameters should be tuned for specific applications.

2 What to monitor—For read counting applications it is important to consider what 

should be counted as a read. The assumption that a read appearing via the API will be 

written to disk is mistaken. Particularly for short fragments, a read may terminate for a 

number of reasons and the minKnow software choose to not write this to disk. In the case of 

2D sequencing (where template and complement strand are both sequenced), a read cannot 

have assumed to be 2D just because the start of the read has been seen. Thus it is necessary 

to monitor reads written to disk. The minKnow software itself has lag in writing reads to 

disk after they have been generated by the sequencer and so latency throughout the system 

will impact on counting where knowledge of the final read is required.
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gReadUntil.py

This script will select for specific regions of a genome, mapping reads in real time using 

DTW and rejecting reads appropriately. This script is limited by the length of the query 

sequence as the time for mapping is proportional to the length of the reference. This code as 

presented will only process the odd numbered channels for “Read Until”. To change this 

behaviour, modify the mp_worker function accordingly. Optimal performance on a flow cell 

will require as many processors as can be dedicated to it.

A second script is provided - test_gReadUntil.py which can take an input collection of reads 

and filter them based on mapping location in the genome.

aReadUntil.py

This script will map specific amplicons to a reference and demonstrates the ability to select 

for individual amplicons directly on the sequencer. We recommend a powerful laptop with at 

least 8 cores for running this alongside the sequencer. Alternatively, the code can be run 

from a second server. In order to count the number of reads generated, this code looks at 

reads as they are written to disk by minKnow as well as following the output stream of data 

in real time. Thus if running on a second server, reads should be synchronised using rsync 

from the minION laptop to the second server as soon as they are generated. An additional 

conflict may occur if Metrichor is being run in real time alongside the script. Metrichor itself 

will move files from the “reads” folder to a subfolder called “uploads”. We suggest that 

users do not run Metrichor alongside this code at this time to avoid conflicts.

An example “ids” file is provided in the root directory of the repository called 

“lambda_amplicons.txt” which can be used to map amplicons from the amplicon 

experiments presented here.

This script implements a number of additional features worth highlighting. It directly 

interacts with minKnow and, if the -s option is set, will stop the currently running 

sequencing program when the required depth of sequencing has been reached. This can be 

set using either the -d flag, which will apply that coverage depth to each amplicon, or the -cd 

flag which takes a comma delimited list of depths. MinKNOW interaction requires the IP 

address of the machine running minKnow being supplied to the script. It is important to 

make sure that localhost is not blocked. This communication with MinKNOW will prevent 

the script from running if MinKNOW itself is not functioning. The -sim flag will write out 

illustrative fast5 format files when being used in conjunction with the simulation mode 

available in ws_event_sampler.exe. This is provided for testing purposes and the files only 

contain the information necessary for aReadUntil.py.

“Read Until” Efficiency

Simulation of “Read Until” is possible using the ws_event_sampler utility to stream events 

artificially derived from a reference sequence. Data presented in Supplementary Figures 5,6 

and 11 are derived from the use of this simulator in conjunction with the gReadUntil or 

aReadUntil scripts. For whole genome simulations, the reference sequences used were as 
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described. For amplicon sequencing, reference amplicon sequences were created with 

different copy numbers of each amplicon as shown in Supplementary Table 4.

Data Analysis

Jupyter notebooks documenting the analysis for each panel from the manuscript are 

available from https://github.com/mattloose/RUFigs . All requisite files are contained within 

the repository. For the calculation of coverage plots, BAM files were processed with the 

genomeCoverageBed tool from BedTools using the -d option to report depth at every 

position22,23. For clarity of presentation individual coverage traces were smoothed over 50 

base pair windows using a simple Perl script (see https://github.com/mattloose/RUFigs/fig2/

cov_windows.pl ). BAM files for each time window were generated by extracting timed 

reads in minute windows using minoTour, which logs sequencing time stamps derived from 

the raw read files automatically against each aligned file24. Similarly labelled file sets can 

be obtained using either poretools or poRe25,26.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Targeted sequencing of specific regions of the lambda genome by direct selection using 

“Read Until”. (a) shows selective enrichment of the lambda genome in two 5kb regions 

(10-15 kb and 30-35 kb) sequencing with SQK5 chemistry (30b/s). Read Until is only 

applied to even numbered channels. (b) repeats this experiment on simulated reads under 

ideal conditions. Note the more consistent read lengths. (c) shows selective sequencing of 

lambda using SQK6 chemistry (70 b/s) enriching at 10-15 kb and 35-40 kb. Read Until is 

only applied to even numbered channels. (d) shows selective sequencing on all channels of 
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one 10 kb region (15-25 kb). Violin plots show 2D read length for each library except (b) 

which is a template only simulation.
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Figure 2. 
Selective sequencing of specific individual amplicons from a library using “Read Until”. (a) 

shows coverage plots for amplicons sequenced without Read Until applied. (b) shows 

selective sequencing of odd numbered amplicons. 2D reads are absent from even numbered 

amplicons. Template reads can be seen for all amplicons. (c) shows the inverse relationship 

where even numbered amplicons are selected for sequencing. The peaks in template 

coverage seen are the short reads being rejected rapidly by read until. Supplementary Fig. 8 

repeats (b) showing this same phenomenon on odd numbered amplicons. Note that the lower 
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quality of complement reads results in lower coverage when mapped to a reference and thus 

2D coverage is often higher than either template or complement.
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Figure 3. 
Normalization of amplicons in a library using “Read Until”. (a) shows coverage over each of 

the 11 amplicons without “Read Until” (top pane) and with “Read Until” applied (bottom 

pane) trying to normalize coverage. Gray - 2D reads, Orange - complement, Blue - 

Template. (b) shows the cumulative coverage for three representative amplicons (3,4,6) in 1 

minute intervals. The black line is predicted 2D coverage for each amplicon calculated by 

fitting to the first 15 minutes of data. (c) shows the observed 2D coverage after 48 minutes 

(top pane), the total coverage predicted for each amplicon based on the first 15 minutes of 

sequencing (middle pane) and the projected depth if the reads were allowed to accumulate 

without “Read Until” until each amplicon exceeded the minimum coverage threshold, which 

would take approximately 105 minutes (bottom pane).
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