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Abstract

Accurate and rapid identification of cell populations is key to discovering novelty in 

multidimensional single cell experiments. We present a population finding algorithm X-shift that 

can process large datasets using fast KNN estimation of cell event density and automatically 

arranges populations by a marker-based classification system. X-shift analysis of mouse bone 

marrow data resolved the majority of known and several previously undescribed cell populations. 

Interestingly, previously known cell populations, as well as intermediate cell populations in early 

hematopoietic development, were described via novel marker combinations that were defined via 

routes to their locations in expressed marker space. X-shift provides a rapid, reliable approach to 

managed cell subset analysis that maximizes automation that not only best mimics human 

intuition, but as we show provides access to novel insights that “prior knowledge” might prevent 

the researcher from visualizing.

Recent years have seen rapid progress in multiparametric single cell proteomic and genomic 

research. One innovation is mass cytometry (CyTOF)—a single cell proteomics platform 

that combines elemental mass spectrometry with flow cytometry1—enabling up to 50 

parameters per single cell to be measured. High dimensional cytometry can be used to 

resolve discrete cell states such as the phenotypic continuums in hematopoietic cells2 and B 

cells3. While, there are a surfeit of excellent clustering methods that have been developed to 

date for single cell analysis (see4 for a survey), few if any of those methods was tested for 

performance on high-dimensional CyTOF datasets (which represent unique computational 

complications as will be discussed below). A clustering system that could handle high 
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parameter datasets and which performed robustly compared to published methods was 

required. Also, an algorithm was needed that can find the optimal number of clusters in a 

data-driven manner.

For this and reasons demonstrated below, X-Shift (so named by analogy with other mode-

seeking algorithms) was developed to use a weighted K-nearest neighbor density estimation 

(KNN-DE)5. Given a dataset (Fig. 1a), X-shift computes the density estimate for each data 

point (Fig. 1b). It then searches for the local density maxima in a nearest-neighbor graph, 

which become cluster centroids. All the remaining data points are then connected to the 

centroids via density-ascending paths in the graph, thus forming clusters (Fig. 1c). The 

algorithm further checks for the presence of density minima on a straight line segment 

between the neighboring centroids and merges them as necessary (Fig. 1d). This is needed to 

ensure that the neighboring clusters, even if they have similar phenotypes, do in fact 

represent unique density-separated populations. Furthermore, clusters are merged based on a 

fixed Mahalanobis distance threshold.

KNN-DE has been established as an adaptive-bandwidth density estimator that overcomes 

certain sparseness issues associated with multidimensional spaces6. In simulated tests we 

found that KNN-DE faithfully captures the true probability density of sampled normal 

distribution mixtures even when the dimensionality of space reaches 100 dimensions 

(Supplementary Fig. 1). To further leverage the power of KNN-DE, we designed a fast KNN 

search algorithm that partitions the dataset into convex regions and uses distances to region 

centroids as a guide for neighbor search. In our tests X-shift employed with the improved 

search algorithm shows an estimated runtime of O(n1.77) giving a 4 to 5-fold speedup over 

the exhaustive search which makes it possible to cluster datasets (several million cell events) 

on a standard multi-core workstation (Supplementary Fig. 1).

The resolution of X-shift clustering is defined by the number (K) of nearest neighbors that 

are used for the density estimate. Lower K values allow resolving small and closely-

positioned populations, but the result becomes increasingly affected by stochastic variations. 

To study the X-shift dependence on K value, we generated a series of simulated cytometry 

datasets based on multivariate Gaussian mixture models with varying number of populations 

and dimensionality (see Methods). Clustering those datasets with K value within the [100, 5] 

interval resulted in a reproducible pattern (Fig. 1e). Initially, as K decreased the number of 

clusters grew very slowly, if at all. Towards the end of the range, the number of clusters 

matched the number of populations that was used to generate the dataset. At very low K the 

number of clusters exhibited exponential growth, suggesting over-fragmentation of 

populations. Manual inspection showed that the dataset tended to be under-clustered during 

the linear phase (not all populations separated) while at the exponential phase one 

population was often incorrectly split into multiple clusters. Similar results could be 

obtained in equal mixtures of normal and multivariate noncentral Student distributions, 

which are long-tailed and asymmetric. (Supplementary Fig. 2–4). We suspected that an 

optimal K value for each dataset might be selected automatically by finding the switching 

point in the cluster number plot, since this switch-point likely corresponds to the optimal 

balance between separating distinct populations while minimizing their over-

fragmentation7,8.
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X-Shift was tested against top-performing algorithms from the FlowCAP I data analysis 

challenge4 using the 12-color normal donor dataset (NDD). Conforming to the rules of the 

FlowCAP challenge I, we ran X-shift in the automated mode, allowing optimal K to be 

selected by the switch-point-finding algorithm. The comparison of X-shift results to the 

hand-gating submissions using the original FlowCAP R scripts showed an average F-

measure of 0.912, which closely matched the performance of the top algorithms in that 

challenge (Fig. 1f). Since X-shift was specifically developed to handle high-dimensional 

CyTOF data, we initiated a detailed validation of X-shift on a CyTOF dataset from mouse 

bone marrow. Replicate bone marrow samples were independently harvested from 

C57BL/6J mice (Fig. 1g), barcoded stained with a panel of 38 antibodies against surface 

markers based on an immune system reference map9, analyzed on CyTOF, and then 

independently hand-gated by 3 cytometry experts to identify 24 immune cell populations 

(Fig. 1g, Supplementary Fig. 5). Experts used the same gating strategy but placed the gate 

boundaries independently. The consensus assignment was used to establish the reference 

population list.

We computationally clustered each biological replicate over a range of K values using all 

surface markers. The clustering results were compared to the reference hand-gated cell 

populations (Methods) via F-measure to summarize the purity and yield of a given 

manually-gated population compared to its best-matched cluster. Fig. 1h shows the 

dependence of median F-measures for individual populations plotted as stacked areas as 

determined by the K value. The sum of all F-measures quantifies the overall similarity of 

clustering to the hand-gating. It commences at 13.92 ± 0.38 (K = 200) and increases slowly, 

reaching the maximum of 16.52 ± 0.24 when K = 20. This growth is accompanied to by a 

linear-like growth in the number of clusters. At lower K-values the cluster number curve 

switched into the exponential-like growth phase and F-measure decreased as down to 14.16 

± 0.19 at K = 5. When we next clustered each replicate separately and allowed the optimal K 

to be automatically determined we obtained the average F-measure sum was 16.72 ± 0.77, 

even slightly above the maximum seen earlier in the manual parameter adjustment run, and a 

median F-measure of 0.79 across populations (Fig. 1i). Therefore, a key attribute of X-shift 

is its ability to automatically estimate the optimal clustering parameter K by finding the 

switch-point in the plot of cluster number over various K. While the switchpoint-finding idea 

have been employed in various contexts7,8, to our knowledge it remains an empirical rule not 

backed by a solid mathematical theory. In the case of X-shift, we speculate that the elbow 

point in the cluster number over K plot of X-shift is a result of a balance between bias and 

variance of the density estimate, which has been thoroughly investigated in the context of 

kernel density estimation10.

The same comparison was repeated for SPADE as well as top-performing flow data 

clustering methods that participated in FlowCAP competition on the same set of data4. 

Three methods failed to run on our dataset (AdiCYT4, FLOCK11, FlowMerge8, 

Supplementary Fig. 6–7), while others showed a considerably lower (than 16.59 for X-shift) 

maximal F-measure sums: FlowPeaks12-14.79, SPADE13-14.86, PhenoGraph14-14.63, 

flowMeans4-14.38, SWIFT15-8.07 SamSPECTRAL16-7.34. Detailed results and 

comparisons are found in Supplementary Fig. 8. In comparison, X-Shift showed consistently 
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more robust outcomes and was further evaluated for the biological relevance of the 

discovered subsets.

To represent X-shift derived populations we organized clusters into a hierarchical marker-

based classification tree (which we term Divisive Marker Tree (DMT)). The iterative 

algorithm initiates DMT with a root node encompassing all clusters which then is subject to 

iterative binary division (see Methods for a detailed explanation). The resulting hierarchical 

binary classification (Fig. 2a) of cell types resembles manual gating hierarchies. By tracing 

the sequence of marker divisions from the root, the user can infer a concise marker-based 

signature for each cell population that uniquely differentiates it from other populations. The 

numerical values on each node specify the cutoff level for a given marker, here on asinh(x/5) 

scale. For instance, MPP population is CD19 < 0.53, CD3 < 1.52, CD49b < 1.89, Sca1 > 

2.62, 120g8 < 1.70, CD27 > 1.62, CD34 > 1.72, cKit > 1.50.

X-shift and DMT allowed for identification of biologically relevant cell subsets within 

several hand-gated cell types (examples given in Fig. 2b and Supplementary Fig. 9a–b) that 

were not accounted for by the gating. For instance, CD4+ T cells were further split along 

CD44 and Sca1, which is in retrospect an expected result since those markers of activated 

and memory cells in mouse17. CD8+ T-cells were subdivided along CD44 and Ly6C, the 

latter one, being often used to call out myeloid cells, also is a marker of central memory 

cells18. Additional features of the dataset were highlighted by X-shift coupled to DMT: 

GMP cells were divided into 2 subsets by CD27 and cKit expression, supposedly 

representing discrete differentiation stages. X-shift also found a distinct MHCII+ subset in 

plasma cells, which is not widely known, but MHCII re-expression has been reported in the 

context of isotype-switching19. Plasmacytoid dendritic cells were split into CD4hi and 

CD4lo, which represent distinct maturation stages of pDCs20. Similarly, NK cells are 

subdivided along CD11b and CD16/32 expression, representing distinct maturation stages. 

Further experimentation might be warranted to determine the biological importance of such 

results.

Several cell clusters could not be deduced from the surface marker expression profiles. To 

map these we sampled cells from clusters and arranged them in a force-directed graph layout 

(Fig. 2c). In this graph cell populations appear to form a hierarchical progression that 

corresponds to major hematopoietic lineages gradually developing from the progenitor MPP 

population: myeloid, erythroid, lymphoid. Mature peripheral populations, such as T-cells, 

visibly stand apart from the developmental continuum. Interestingly, the immature CD4- 

pDC population appears to be connected directly to the CLP through a distinct population of 

cells that appear to gradually lose CD34 and simultaneously upregulate 120g8, while other 

pDC markers, such as B220 and CD4, were found to be expressed only at the late stage of 

maturation (Fig. 2e and Supplementary Fig. 9a). Another intriguing point was the apparent 

branching of classical and intermediate/non-classical monocyte pathways, with a distinct 

GMP-like population situated at the branching point (Fig. 2d and Supplementary Fig. 9d). 

Such examples demonstrate that X-shift can find novel cell populations that could shed light 

on some of the intriguing questions that have not been decisively addressed to date, such as 

the origin of pDCs or the developmental order of monocyte subpopulations. Additional 
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information about locations of hand-gated populations and marker expression in the force-

directed layout map is available in Supplementary Fig. 10–15.

In summary X-shift, in combination with tailored visualization tools (Divisive Marker Trees 

and Single-cell Force-Directed Layouts) facilitates the exploration of single-cell analysis of 

complex systems. X-shift and associated visualization tools are freely available as a part of 

VorteX graphical environment: http://web.stanford.edu/~samusik/vortex/.

 Online Methods

 Weighted K-nearest neighbor density estimate

Identification of local density maxima has been addressed previously by a number of mode-

seeking algorithms (e.g. mean-shift21, quick-shift22 and the recent algorithm by Rodriguez 

and Laio23). Generally, those algorithms rely on kernel density estimation (KDE), the 

performance of which deteriorates in multidimensional data due to the sparseness of sample 

distribution6. The runtime of KDE is O(n2) in dataset size21.

We therefore approached the problem differently. Density estimation was computed as 

described in 5, setting nu=const and, p=1

Where n is the size of the dataset, Vd is the volume of a unit sphere in d dimensions, Xj(x) 
represents the j-th nearest neighbor of x, d is the number of dimensions and |x - y| is the 

distance between x and y. In the reason of numerical stability, X-shift computes a simplified 

version of density estimate that relates to the original density estimate by a monotonous 

transformation:

Within X-shift algorithm all decisions about local maxima and data point assignment are 

being made solely based on inequality comparisons of density estimates, thus the 

monotonous transformation does not change the clustering output.

 Distance metric

X-shift can work with any distance metric that satisfies the triangle inequality. All 

experiments in this work were carried out using angular distance, where |x - y| represents the 

angle between vectors x and y, computed via
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 Fast search for K nearest neighbors

Large datasets present a challenge for KNN because the exhaustive search requires O(n2) 
steps. KD-trees have been successfully used to speed up the search, but their performance 

degrades in multidimensional space, typically above 10 dimensions24. We designed a way to 

compute the exact KNN by partitioning the dataset into random convex regions and then 

using the distances to region centers and the triangle inequality to guide the KNN search. 

The algorithm is the following:

Step 1. Split the dataset D into convex regions using K-means algorithm where K is 

set to be a square root of the dataset size. We found that running K-means for as 

little as 3 iterations produces sufficiently compact regions to yield a considerable 

speedup in the next step.

Step 2. For each region A, find its centroid c. Create an ordered list B containing all 

data points in the dataset and sort it by |bi - c| in ascending order using quicksort 

algorithm. Following the reverse triangle inequality, for each data point x in the 

region A it holds true that |x - bi| ≥ |bi, c| - |x, c|. Therefore for any point x in the 

region A, if data points in the list B are ordered by their the distance to c, they also 

appear to be ordered by the lower bound of their distance to x

Step 3. Initiate the list of k-nearest neighbors of a point x: neigh(x) by populating it 

with b1…bk data points from the ordered list B. Sort the list neigh(x) by the 

distance to x. Iterate through the rest of the list b(k+1) … bn, for each bi finding the 

minimal index j such that the |x - bi| < |x - neigh(x)j|. If such j exists, insert the bi 

into the neigh(x) at index j, shifting the anteceding members to the right and 

removing the last member off the list. Stop iterating through bi in B when |bi - c| - |x 

- c| > |x - neigh(x)j|. At this point the lower bound estimate of distance to bi: inf(|x, 

bi|)= |bi - c| - |x - c| is less than the distance to the k-th nearest neighbor in the 

current list. Since inf((|x - bi+1|) > inf(|x - bi|), it also means that none of the 

consecutive elements bi+1…bn can be closer to x than the neigh(x)k. If this 

condition has been satisfied before i = n, it means that the k nearest neighbors of x 
have been found faster than it could have been done through an exhaustive search.

 X-shift algorithm

Step 1. For each data point in the dataset, compute density estimate using a method 

of choice. For the reason of speed, we prefer to use our fast KNN density estimate, 

but in principle any density estimation method, like kernel density estimate or 

multidimensional histogram, can be plugged into X-shift.
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Step 2. For each data point, find a nearest neighbor with a higher density estimate 

value and connect the two with a directed edge. If such neighbor does not occur 

within Z nearest neighbors, the point is added to a list of candidate cluster 

centroids. The number Z is chosen depending on the dataset size so that the 

Bonferroni-corrected p-value stays constant. Assuming that under null hypothesis 

the data point distribution is uniform (there are no clusters) and the density of 

neighbors of any point is equally probable to be higher or lower than of a point 

itself, the p-value for a data point to be pass a centroid test is equal to 2Z, which is a 

probability of all of its Z neighbors to have a lower density by chance. After 

applying Bonferroni correction for multiple hypothesis testing, the number Z that 

would result in a centroid list with a given pvalue can be estimated using the 

following formula:

where n is the dataset size. For all the experiments in this paper we fixed the default 

p-value at 0.01, which is expected to result in a reliable list of candidate centroids 

for each clustering run. Generally, there is no need to adjust the default value.

Step 3: Determine which candidate centroids are Gabriel neighbors13 and test 

whether there is a minimum of density on the segment connecting the centroids. If 

there is not, then it means that the lower-density centroid is not a real local 

maximum and should get connected to the higher-density centroid. This merging 

step ensures the high quality of the output clusters. We found that changing the p-

value and thus adjusting the number of tentative clusters has only a small effect on 

the number of clusters in the output, but increasing the p-value might notably 

increase the runtime, since the number of evaluations depends on the square of 

number of tentative centroids.

Step 4: Put all the data points that are directly or indirectly connected to the 

centroid into a cluster.

Step 5: Iteratively merge pairs of clusters with the lowest Mahalonobis distance, 

until all clusters have Mahalonobis distance of at least 2.0 between them, this cutoff 

corresponds to the theoretical density-separation cutoff of the normal 

distributions26 and clusters that are closer than this threshold are likely to be 

spurious fragments.

 Finding optimal K using line-plus-exponent regression

Given the numbers of clusters c1…cn obtained at different K values k1…kn in descending 

order, the algorithm iterates through ki. First, linear regression coefficients c = b1·k + a1 are 

estimated based on (cj, kj), j = 1…i Next, exponential regression coefficients c = a2eb_2k are 

estimated based on (c′j, kj), j = 1…i and c′ = b1·k + a1. Finally, the sum of squares SSi = 

Σt(ct - (b1·kt + a1 + a2eb_2k_t)) is computed and the switch-point ki is selected by iterating 

through i = 2…n-1 such that SSi is minimized.

Samusik et al. Page 7

Nat Methods. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Divisive marker tree

At each iteration the cluster set is partitioned into two subsets that have non-overlapping 

expression levels of a single marker. The dividing marker and the cut point are chosen to 

maximize the average correlation of expression profiles within the resulting groups. It is 

important in thinking about DMT to not interpret the binary division of cells as a “last use” 

of that marker—meaning the same marker can be used in the DMT trees as a divisive 

element multiple times—essentially a sliding scale for division of cell subsets that operates 

in an intuitive and natural manner.

The divisive maker tree is constructed via recursive binary partitioning of the set of marker 

expression vectors. On each iteration, the parent set of vectors P is divided into two subsets 

A and B, such that:

A and B have non-overlapping ranges of average expression values on at least one marker X, 

and vectors in A are always greater than vectors in B on this marker. In other words, there 

exists at least one marker x, for which it is true that a ∈ A ∧ b ∈ B ⇒ ax > bx

Out of all possible partitions that satisfy the previous condition, one is chosen that 

maximizes the average uncentered Pearson correlation rab =(a·b)/√((a·a)(b·b)) of the cluster 

expression profiles (computed on all markers) within the subsets. The two subbranches are 

labeled as “marker>cutoff” and “marker<cutoff”. Since for each given partition there can be 

several markers with non-overlapping expression values, the marker that has the largest 

variance-normalized difference between the two groups is chosen for labelling.

 Force-directed layout

Cells events were selected randomly from each cluster (all cells from cluster smaller that 

1,000 cells or 1,000 randomly sampled events from clusters larger than 1,000 cells). Cell 

events were put as nodes in a graph and connected with unweighted edges to 10 nearest 

neighbors in the phenotypic space (angular distance). The resulting graph was subject to 

force-directed layout using ForceAtlas2 algorithm27. Layout and visualization were 

produced using Gephi-Toolkit v0.8.7 (http://gephi.org/toolkit/).

 CyTOF methods

The CyTOF antibody panel was prepared and validated as described by Spitzer and co-

workers9. Wild-type male C57BL/6 mice were purchased from The Jackson Laboratory at 

11 weeks of age. Animals were rested in our animal facility for 1 week and sacrificed at 12 

weeks of age. All mice were housed in an American Association for the Accreditation of 

Laboratory Animal Care–accredited animal facility and maintained in specific pathogen-free 

conditions. Animal experiments were approved and conducted in accordance with Stanford 

University Asia Pacific Laboratory Accreditation Cooperation #13605. After euthanasia by 

CO2 inhalation, animals were perfused and femuri were isolated. Bone marrow was flushed 

and resuspended in PBS and 4°C. Cells were washed with PBS with 5 mM EDTA and 

resuspended 1:1 with PBS with 5 mM EDTA and 100 μM Cisplatin (Enzo Life Sciences, 

Farmingdale, NY) for 60s before quenching 1:1 with PBS with 0.5% BSA and 5 mM EDTA 

to determine viability. Cells were centrifuged at 500 g for 5 min at 4°C and resuspended in 
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PBS with 0.5% BSA and 5 mM EDTA at a density between 2–5·106 cells/ml. Suspensions 

were fixed for 10 min at RT using 1:1.4 Proteomic Stabilizer according to the 

manufacturer’s instructions (Smart Tube Inc., Palo Alto, CA) and frozen at −80°C. For the 

initial experiments, 10 total replicate mice were utilized. Mass-tag cellular barcoding was 

described as previously described. Cells were resuspended in PBS with 0.5% BSA and 

0.02% NaN3 and metal-labeled anti-CD16/32 antibody (Biolegend TruStain fcX, cat. No. 

101320, Clone 93) was added at 20 μg/ml for 5 min at RT on a shaker to block Fc receptors 

and prevent non-specific staining. Surface marker antibodies were added, yielding 500 μL 

final reaction volumes, and stained at RT for 30min on a shaker. Cells were washed 2 times 

with PBS with 0.5% BSA and 0.02% NaN3 then permeabilized with 4°C methanol for 10 

min at 4°C. Cells were washed twice in PBS with 0.5% BSA and 0.02% NaN3 and stained 

with intracellular antibodies in 500 μL for 30 min at RT on a shaker. Cells were washed 

twice in PBS with 0.5% BSA and 0.02% NaN3 and then stained with 1 mL of 1:4000 

191/193Ir DNA intercalator (Fluidigm) diluted in PBS with 1.6% PFA overnight. Cells were 

washed once with PBS with 0.5% BSA and 0.02% NaN3 and then two times with double-

deionized (dd)H2O. Care was taken to ensure that buffers preceding analysis were not 

contaminated with metals in the mass range above 100 Da. Mass cytometry samples were 

diluted in ddH2O containing bead standards (see below) to approximately 106 cells per mL 

and then analyzed on a CyTOF2 mass cytometer (Fluidigm) equilibrated with ddH2O. The 

final cell pellet was resuspended in ddH2O containing a bead standard at a concentration 

ranging between 1 and 2*104 beads/ml as previously described28. The mixture of beads and 

cells were filtered through a 35-μm filter before analysis. Mass cytometry files from each 

experiment set were normalized together using the mass cytometry data normalization 

algorithm1. Normalized data were gated to remove doublets, debris and neutrophils and the 

resulting FCS files were subject to further gating to identify specific populations and also 

processed by clustering algorithms.

 Comparing clusters and hand-gated populations

Given the set of hand-gated populations, contingency matrix C was computed for each 

clustering, where Cij is the number of cells in i-th cluster that belong to j-th population. 

Recall R and precision P matrices were computed: Rij = Cij/Σk(Ckj), Pij = Cij/Σk(Cik). Both 

matrices were combined into F-measure matrix Fij=2(RijPij)/(Rij + Pij). The F-measure 

matrix was used to find an optimal one-to-one assignment between clusters and hand-gated 

population using Hungarian algorithm, such that the sum of F-measures is maximized. Since 

the classical Hungarian algorithm solves an inverse problem, i.e. minimizes the sum of 

weights, the algorithm was actually run on the negative matrix F′= 1 - F. The Java 

implementation of Hungarian algorithm by Kevin Stern was obtained from http://software-

and-algorithms.blogspot.com/

 Data pre-processing and clustering

CyTOF experiment files were subject to de-barcoding and bead normalization1. Then, data 

was pre-gated to remove doublets, dead cells, erythrocytes and neutrophils. Non-neutrophils 

population was subject to cluster analysis. Raw intensity values were subject to noise 

thresholding and asinh transformation y = asinh(max(x - 1, 0)/5. Transformed values were 

clustered with X-shift or other clustering methods.
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 Code and data availability

Source code is available from https://github.com/nolanlab/vortex. Source FCS files for 

clustering algorithm comparison and gating annotation file can be downloaded from https://

web.stanford.edu/~samusik/Panorama%20BM%201-10.zip

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. X-shift algorithm design and validation
(a–c) Workflow of X-shift algorithm (a) Synthetic 2-dimensional dataset with three ‘point 

clouds’. (b) K nearest neighbors density estimation. Example sets of 20 nearest neighbors 

are shown for 3 data points. (c) Connecting datapoints against the gradient of density 

estimate and finding local maxima (d) Testing neighboring populations for density-

separation. (e) X-shift clustering of synthetic data. Randomly generated datasets with 10 

populations in 15 dimensions, 20 populations in 25 dimensions and 30 populations in 35 

dimensions were clustered with X-shift, varying the number of nearest neighbors (K) used 

for density estimate from 100 to 5. Blue line shows the fitting of the curve using line-plus-
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exponent regression. (f) Assessment of X-shift performance in automatic parameter-finding 

mode on 12-color FlowCAP I Normal Donor dataset, compared to FlowCAP I Challenge I 

submissions4. (g) The scheme of evaluation of X-shift performance against hand-gated 

CyTOF data. (h) X-shift clustering of mouse bone marrow data at various K settings were 

compared to hand-gates and the median F-measures over 10 biological replicates were 

plotted as stacked areas. Population labels are positioned to the point where each F-measure 

first reaches 90% of its maximum. (i) Results of X-shift analysis of bone marrow data when 

K was automatically selected for each of the 10 replicates. Bars show median values across 

replicates and error bars represent inter-quartile range.
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Figure 2. X-shift clustering reveals novel features of mouse hematopoietic differentiation
(a) Clustering of bone marrow replicate #7 with X-shift (K = 20 was auto-selected by the 

switch-point-finding algorithm) represented in a Divisive Marker Tree. Node radii are 

proportional to the cubic root of the number of cell events contained at each node. The tree 

is a nested representation, i.e. parent nodes contain the union of cell events of its children. 

Labels on nodes show marker cutoff values that define each sub-branch, expressed on the 

arsinh(x/5) scale. (b) X-shift finds biologically relevant subsets within the hand-gated cell 

populations (Bone marrow replicate #7, X-shift K = 20). (c) Single-cell Force-Directed 

Layout of Mouse Bone Marrow #7 (X-shift K = 20, color-coded for 48 clusters). Color code 

shows X-shift clusters and grey boxes show locations of hand-gated cell populations. (d) 

Force-directed layout of populations related to monocyte development. Color code 

represents expression levels of indicated markers. (e) Force-directed layout of populations 

related to pDC development. Color code represents expression levels of indicated markers.
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