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Recent technical advances have enabled single-cell RNA sequencing (RNA-seq). 

The first exploratory studies have already led to insights into the dynamics of 

differentiation, cellular responses to stimulation and the stochastic nature of 

transcription. We are entering an era of single-cell transcriptomics that holds 

promise to substantially impact biology and medicine. 

 

Our notion of transcriptomes has been forged mainly by population-level observations 

that have been the mainstream in biology over the last two decades. We are used to 

thinking about differences in expression in terms of graded or subtle fold changes 

when comparing data across entire tissues or conditions. But the actual differences in 

cell populations may be far larger. Subsets of cells may experience dramatic changes 

that are averaged out or diluted by the presence of a large number of nonresponsive 

cells. In fact, it has been shown over 60 years ago that inductive cues often result in 

all-or-none responses in single cells but these responses are observed as a gradual 

increase when quantified across the population1. 

It is clear that assessing gene expression in single cells is critical to better 

understand cellular behaviors and compositions in developing, adult and pathological 

tissues. To this end, a long-standing goal has been to enable genome-wide RNA 

profiling, or transcriptomics, in single cells2,3. Only recently has the technology 

matured so that biologically meaningful differences can be robustly detected with 

single-cell RNA-seq. Detailed protocols4–6 for sequencing library preparations and the 

introduction of commercial automation (for example, Fludigm C1) have lowered the 

barriers for researchers to access these methods. Widespread adoption of these 

techniques will have major impact on our understanding and appreciation of cellular 
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states, the nature of transcription and gene regulation, and our ability to characterize 

pathological states in disease. 

Above the noise 

Single-cell transcriptomics relies on the reverse transcription of RNA to 

complementary DNA and subsequent amplification by PCR or in vitro transcription 

before deep sequencing—procedures prone to losses or biases. The biases are 

exaggerated by the need for very high amplification from the small amounts of RNA 

found in an individual cell. Although technical noise confounds precise measurements 

of low-abundance transcripts, modern protocols have progressed to the point that 

single-cell measurements are rich in biological information. For example, a recurrent 

theme in single-cell transcriptome studies is that cells reliably group by their cell type 

or state when subjected to unsupervised clustering7–10. Gene expression associated 

with cell identity or developmental stages thus has a stronger signal than technical 

noise or biological variability related to dynamic processes such as phase of the cell 

cycle. Moreover, the power to detect meaningful biological differences from single-

cell data is demonstrated by the identification of hundreds to thousands of genes with 

significant differences in abundances between cell types7,9. Recent refinements have 

improved the signal-to-noise ratio even further by enhancing the efficiencies of 

reverse transcription and PCR11 or applying molecular barcoding strategies that 

control for amplification bias12. 

Challenges in single-cell transcriptomics 

Currently available single-cell RNA-seq methods were developed with different 

objectives. Full-length transcripts can be profiled, such that sequence reads cover the 

entire gene to quantify both gene and transcript isoforms and also monitor single-

nucleotide polymorphisms and mutations9,11. In contrast, tag-based sequencing of 5c 

or 3c ends10,13 provides only an estimate of transcript abundance at the cost of 

coverage across gene structures but allows the assay to be scaled up and combined 

with molecule counting12. The unified goal in the field is to develop cost-effective, 

high-throughput methods that detect all RNA present inside the cell at full-length 

RNA coverage. Lowering RNA losses and enhancing the conversion of RNA to 

cDNA before amplification are areas where further development would boost RNA 

detection. Another important goal is to augment procedures for the dissociation, 

sorting and picking of individual cells14 so that complex tissues can be dissociated 
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into single-cell suspension without inducing gene expression changes related to cell 

handling or picking. Finally, simultaneous detection of poly(A)+ and poly(A)– RNA, 

irrespective of transcript length, and RNA modifications (for example, m6A in ref. 15) 

are also desirable features for future development. 

One of the mind-boggling features of transcription that only becomes apparent 

in single-cell analysis is that expression of a gene that is reliably detected in a 

population may be anywhere from absent, to low, to high in a given cell because of 

random fluctuations. Such variability may be explained by models that describe 

transcription as occurring in discrete bursts16 driven by stochastic molecular 

processes. The stochastic nature of transcription has been studied in greatest detail in 

prokaryotes and unicellular eukaryotes16, but more and more lines of evidence point 

to similar phenomena in mammalian cells17,18. We must therefore take into account 

such transcriptional behavior in our strategies for analyzing single-cell transcriptome 

data and in our biological interpretation of the results. For example, standard 

differential expression tests might not be suitable for single-cell data that contain a 

fair number of cells with no detectable expression. Indeed, new tests have been 

proposed19 that combine differences in transcript abundance with differences in the 

fraction of cells with expression. 

Single-cell transcriptome studies to date require cells in suspension (for 

example, dissociated tissues or cultures) so that the spatial organization of the 

population is often lost, unless cells had been picked from defined areas. Spatial 

information can be recovered to some extent through RNA in situ hybridization 

analyses of marker genes for identified cell types, allowing cell type–specific 

expression profiles to be projected onto complex tissue structures. However, methods 

that simultaneously capture spatial structures and transcriptome-wide profiles at 

single-cell resolution are being developed but have yet to be described (for example, 

building on in situ sequencing or array-based multiplexing strategies). The ability to 

perform spatial single-cell transcriptomics on developing, adult or pathological tissues 

promises to dramatically elevate our understanding of life and disease, revealing the 

transcriptomes related to specific states of intercellular communication, polarity 

formation and local gradients. 
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Implications for biology 

The measurement of gene expression in single cells will revolutionize our 

understanding of gene regulation and resolve many longstanding debates in biology. 

Cells cluster by cell type or developmental state when grouped according to their 

expression profiles7–10. Thus, expression-based clustering allows for the unbiased 

reconstruction or ‘reverse engineering’ of cell types in any population or tissue after 

sequencing enough individual cells (Fig. 1). If the sampling of cells is extensive and 

sufficiently free from biases, such clustering can reveal all cell types present, 

including new ones. All cells in a cluster can also be used to derive robust cell-type 

expression profiles, again in a data-driven manner and without previous knowledge of 

which marker genes define a tissue or cell type. Single-cell profiling of RNAs is 

therefore the first method that could lay a foundation for a quantitative, data-driven 

classification of cell types.  

Single-cell transcriptomics will also enable high-resolution transcriptional 

maps of both stable and transient cellular states during differentiation or 

reprogramming. Important for these aims is to sample sufficient individual cells that 

span the entire process, so that analyses can later zoom in on the subset of cells at 

critical bifurcation points of differentiation. The sample size should reflect how often 

cell types or events are expected to occur. Also, it is debated to what extent the human 

genome is transcribed, as several studies have identified very rare transcripts (for 

example, those present in one copy per 10,000 cells)20. These transcripts could either 

be expressed at high levels in rare cells (for example, ten copies in one of 100,000 

cells) or have low (leaky) expression in a larger subset of cells. Analyses across 

hundreds or thousands of individual cells will likely resolve these questions and 

improve our understanding of cellular transcriptional landscapes and regulatory 

networks. 

RNA-seq analyses across human tissues and cell populations have 

demonstrated the pervasive use of RNA processing to diversify the transcriptome and 

the proteome21. A large fraction of differences are subtle when comparing tissues, but 

it is possible that patterns of alternative splicing, polyadenylation and transcript start-

site usage will have a more bimodal (on or off) distribution at single-cell resolution, 

as suggested by a pioneering study on single immune cells22. Studies on the regulation 

of alternative polyadenylation have revealed a general shortening of 3c untranslated 
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regions in more highly proliferating cells23 and in transformed cells in vitro24. 

Analyses of in vivo tumors would benefit greatly from single-cell RNA-seq to 

separately extract transcript abundance and isoform information from the mixture of 

transformed cells, stroma and other infiltrating cells. Single-cell transcriptomics of 

dissociated tumor and healthy tissues will enable the precise identification of mRNA 

isoforms that are important for the transformed state. 

Implications for medicine 

Transcriptomic approaches in medicine are often based on comparing pathological 

with matched healthy tissue25 or analyzing a large number of pathological tissues to 

find subclassifications26. Cancer tissues are often characterized by changes in both 

cellular compositions (for example, infiltrating immune cells) and alterations in gene-

expression programs in both the transformed cells and the surrounding stroma. Thus, 

observations at the tissue level contain several differential expression profiles 

superimposed on top of each other. High-throughput single-cell analysis of 

pathological tissues would simultaneously monitor changes in cellular composition 

(based on clustering) and associated gene expression profiles27. Comparisons could 

then be made between specific cell types observed in both the healthy and 

pathological tissues to reveal more precise gene expression programs of disease (Fig. 

1). However, regional variations in cellular composition may necessitate sampling in 

multiple regions from the same tumor28. 

Areas of research that stand to benefit in particular from single-cell 

transcriptomics are those in which the clinically relevant cells are too rare to be 

studied using population-level techniques. For example, only a few circulating tumor 

cells (CTCs) are typically present in a milliliter of blood, which has precluded their 

genome-wide profiling. Two pioneering studies demonstrated the utility of single-cell 

RNA-seq analyses of CTCs of melanoma9 or pancreatic29 origin, as the transcriptome 

profiles both validated the cellular isolation procedure and were used to identify 

alterations in the gene expression programs. Single-cell RNA-seq with full-length 

transcript coverage11 should enable simultaneous measurement of gene expression 

programs and detection of mutations that arise in the tumor through analyses of the 

CTCs. Transcriptome analyses of single CTCs is a noninvasive strategy to select 

treatment based on the inferred mutations30 and also to monitor the development of 

drug resistance. It is time to determine to what extent CTC transcriptome profiling 



 

 6 

can be a future method for cancer diagnostics and treatment selection, and provide 

biomarkers for future therapies targeting CTCs. 

Outlook 

As we are just entering an era of single-cell transcriptomics, the near future will likely 

unravel many surprising and new characteristics of transcriptomes. It will be 

interesting to investigate whether certain scaling laws exist between RNA abundance 

profiles and cellular phenotypes such as cell or nucleus size. For example, to maintain 

protein concentrations inside membranes or subcellular compartments in cells of 

varying size, different abundances would be needed as volume and area scale 

differently with cell size. Sets of genes are likely to scale with characteristics such as 

plasma or nuclear membrane area, cytoplasmic volume and nuclear volume. Only 

with such knowledge at hand can we begin to resolve how cellular heterogeneity and 

cell type composition confound population-level transcriptome analyses. For 

example, comparisons of two tissues composed of cells of differing size might reveal 

differences in expression related to size, rather than the differences of interest. A 

better understanding of single-cell expression profiles will also provide a more 

rational basis for the design of future studies at the most appropriate level of 

resolution (for example, tissue, cell type, single cell or combinations of the three). 

With the maturation of since single-cell transcriptomics, I expect that studies 

of gene expression and regulation in single cells will boom in the coming years and 

the research community will soon obtain precise transcript-isoform quantifications 

across hundreds of thousands to even millions of individual cells. This information 

will answer many outstanding questions (Fig. 1) and lay the foundation for a 

quantitative definition of cell types and their variation in homogeneous as well as 

heterogeneous cell populations. Based on this knowledge it will become feasible to 

determine the transcriptome profiles of nearly all cell types in complex multicellular 

organisms. Single-cell profiling will also dramatically improve gene-regulatory 

network inferences31, as the vast amounts of single-cell profiles are bona fide 

biological perturbations that should improve the power of inference. 
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Figure 1 | Single-cell transcriptome analyses of tissues and cell types. Cells from a 

healthy or pathological tissue are dissociated, analyzed independently with single-cell 

RNA-seq and clustered based on their gene expression profiles. Clustering of cells 

reveals a cell-type map that can be used to assess the composition of the tissue 

including the identification of new cell types or subtypes. These rich data can be used 

to address many questions of gene expression and regulation within or between cell 

types and between tissues.  
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