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Abstract

Genome-wide measurements of protein-DNA interactions and transcriptomes are increasingly

done by deep DNA sequencing methods (ChIP-seq and RNA-seq). The power and richness of

these counting-based measurements comes at the cost of routinely handling tens to hundreds of

millions of reads. While early-adopters necessarily developed their own custom computer code to

analyze the first ChIP-seq and RNA-seq datasets, a new generation of more sophisticated

algorithms and software tools are emerging to assist in the analysis phase of these projects. This

review describes the multilayered analyses of ChIP-seq and RNA-seq datasets, discusses the

software packages currently available to perform tasks at each layer, and describes some

upcoming challenges and features for future analysis tools. We also discuss how software choices

and uses are affected by specific aspects of the underlying biology and data structure, including

genome size, positional clustering of transcription factor binding sites, transcript discovery, and

expression quantification.

Introduction

A longstanding goal for regulatory biology is to learn how genomes encode the diverse

patterns of gene expression that define each cell type and state. Genome-wide measurements

of protein-DNA interaction by chromatin immunoprecipitation (ChIP) and quantitative

measurements of transcriptomes are increasingly used to link regulatory inputs with

transcriptional outputs. Such measurements figure prominently, for example, in efforts to

identify all functional elements of our genomes, which is the raison d’être of the ENCODE

project consortium1. Although large-scale ChIP and transcriptome studies first used

microarrays, deep DNA sequencing versions (ChIP-seq and RNA-seq) offer distinct

advantages in increased specificity, sensitivity and genome-wide comprehensiveness that are

leading to their wider use2.

The overall flavor and objectives of ChIP-seq and RNA-seq data analysis are similar to

those of the corresponding microarray-based methods, but the particulars are quite different.

These data-types therefore require new algorithms and software that are the focus of this

piece. We view the data analysis for ChIP-seq and RNA-seq as a bottom-up process that

begins with mapped sequence reads and proceeds upward to produce increasingly abstracted
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layers of information (Fig. 1). The first step is to map the sequence reads to a reference

genome and/or transcriptome sequence. It is no small task to optimally align tens or even

hundreds of millions of sequences to multiple gigabases for the typical mammalian

genome3, and this early step remains one of the most computationally intensive in the entire

process. Once mapping is completed, users typically display the resulting population of

mapped reads on a genome browser. This can provide some highly informative impressions

of results at individual loci. However these browser-driven analyses are necessarily

anecdotal and, at best, semi-quantitative. They cannot quantify binding or transcription

events across the entire genome nor find global patterns.

Considerable additional data processing and analysis are needed to extract and evaluate the

genome-wide information biologists actually want. While there are now multiple algorithms

and software tools to perform each of the possible analysis steps (Fig 1), this is still a rapidly

developing bioinformatics field. Our purpose here is to give a sense of the tasks to done at

each layer, coupled with a reasonably current summary of tools available. We explicitly do

not attempt any software “bake-off” comparisons, aiming instead to provide information to

help biologists to match their analysis path and software tools to the aims and data of a

particular study. Finally, we try to focus attention on some pertinent interactions between the

molecular biology of the assays, the information-processing methods, and underlying

genome biology.

General features of ChIP-seq

The success of genome-scale chromatin immunoprecipitation experiments depends critically

on 1) achieving sufficient enrichment of factor-bound chromatin relative to nonspecific

chromatin background, and 2) obtaining sufficient enriched chromatin so that each sequence

obtained is from a different founder molecule in the ChIP reaction (i.e. that the molecular

library has adequate sequence complexity). When these criteria are met, successful ChIP-seq

datasets typically consist of 2-20 million mapped reads. In addition to the degree of success

of the immunoprecipitation, the number of occupied sites in the genome, the size of the

enriched regions, and the range of ChIP signal intensities all affect the read number wanted.

These parameters are often not fully known in advance, which means that computational

analysis for a given experiment is usually performed iteratively and repeatedly, with results

dictating whether additional sequencing is needed and cost-effective. This means that the

choice of software for running ChIP-seq analysis favors packages that are simple to use

repeatedly with multiple datasets.

Mapped reads are immediately converted to an integer count of “tags” at each position in the

genome that is “mappable” under the mapping algorithm selected and its parameters (i.e.

read length can be fixed or variable; reads mapped can be restricted to those that map to a

unique position in the genome or can include “multireads” that map to multiple sites). These

early choices in the analysis affect sensitivity and specificity, and their effects vary based on

the specifics of each genome. If only uniquely mapping reads are used, some true sites of

occupancy will be invisible, because they are located in repeats or recent duplicated regions.

Conversely, allocating low-multiplicity multireads will capture and improve some true

signals, but will also likely create some false positives. The choice of mapping algorithm
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can thus be made with eye toward increasing specificity (unique reads only) or increasing

sensitivity (multireads used).

It is relevant to data processing and interpretation that ChIP reactions are enrichments, not

purifications. This is especially true for current protocols that use a single antibody reagent,

because the majority (~60-99%) of DNA fragments (and therefore of sequence reads) in a

ChIP reaction are background, while the minority corresponds to DNA fragments to which

the transcription factor or histone mark of interest was crosslinked at the beginning of the

experiment. These substantial levels of impurity are expected for a one-round enrichment,

and discriminating background sequence reads from true signal must be dealt with in the

analysis phase. “Background” read distributions will be different depending on the

composition and size of the genome. In ChIP-seq datasets from larger mammalian genomes,

most nucleotides have no mapped tags since the overall mapped sequence coverage is much

less than the total genome size (i.e. less than 0.1X coverage). In smaller genomes such as

Drosophila or C. elegans, a typical ChIP-seq assay performed at similar 2-20M read depths

will place read-tags over most of the genome at increasing densities (roughly 1X-10X

coverage), and ChIP-positive signals will be compressed along the chromosome, since there

is much less intergenic space per gene in the smaller genomes.

The strongest ChIP-enriched positions can have hundreds of overlapping reads for DNA

binding factors that are highly efficient targets for ChIP. These strongest signals are not,

however, the only biologically meaningful ones. Statistically robust and reproducible ChIP

signals that have modest read counts (in absolute terms and by comparison with empirically

determined background read distributions) have been observed for locations known to have

high biological regulatory activity by independent criteria4. This means that a key challenge

for ChIP-seq algorithms is to identify reproducibly true binding locations while including as

few false positives from the background as possible. The background distribution of reads in

ChIP-seq is often determined empirically from a control reaction, but some algorithms

model the background from the ChIP sample itself. Whichever approach is taken, the

background read-tag distribution is not reliably uniform, nor is it identical for all cell types

and tissues of the same organism. It is also not expected to be identical from one specific

ChIP protocol to another. Various artifacts can cause different chromosomal areas to be

systematically underrepresented (extremes of base composition that affect library making

and or sequencing itself, for instance) or over-represented (sites of preferential chromosomal

breakage in the cell or during the workup). The current algorithms have each been designed

to ignore a variety of false positive read-tag aggregations that are judged unlikely to be due

to immuno-enriched factor binding, but they are not identical to each other and users should

expect different packages and different parameters to eliminate as background some

overlapping and some novel.

Classes of ChIP-seq signals

Consistent with previous ChIP-chip results, ChIP-seq tag enrichments or “peaks” generated

by typical experimental protocols, can be usefully classified into three major categories:

punctate regions covering a few hundred base pairs or less; localized but broader regions of

up to a few kilobases; and broad regions up to several hundred kilobases. Punctate
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enrichment is a signature of classic DNA-sequence specific binding of transcription factors

such as NRSF or CTCF to an exact source such as their cognate motif (Fig. 2a). A mixture

of punctate and broader signals is associated with proteins such as RNA Polymerase II that

bind strongly to specific transcription start sites in active and stalled promoters (in punctate

fashion), but RNApol2 can also be detected more diffusely over the body of actively

transcribed genes5-6 (Fig. 2b). ChIP-seq signals that come from most histone marks and

other chromatin domain signatures are not point sources as described above but range from

nucleosome-sized domains to very broad enriched regions that lack a single source entirely

such as H3K27 trimethylation in repressed areas7-8 (Fig. 2c).

These different categories of ChIP enrichment have distinct characteristics that algorithms

can use to predict true signals optimally. Punctate events offer the greatest amount of

discriminatory detail to model the source point down to the nucleotide level. To date, most

algorithms have been developed and tuned for this class of binding, though specific

packages can work reasonably well for mixed binding, typically requiring use of non-default

parameters.

Peak-finders, regions, summits, and sources

The first step in analyzing ChIP-seq data is to identify regions of increased sequence read

tag-density along the chromosome relative to measured or estimated background. After

these “regions” are identified, further processing ensues to identify the most likely source-

point(s) of cross-linking and inferred binding (called “sources”). The source is related, but

not identical to the “summit”, which is the local maximum read density in each region When

there is no single point source of cross-linking, as for some dispersed chromatin marks, the

region-aggregation step is appropriate, but the “summit finding” step is not. Software

packages for ChIP-seq are generically and somewhat vaguely called “peak-finders”. They

can be conceptually subdivided into following fundamental components: (1) a signal profile

definition for a ChIP region, (2) a background model, (3) peak call criteria, (4) post call

filtering of artifactual peaks, and (5) significance ranking of called peaks. (Fig. 3). A

summary of the components for twelve published software packages is given in Table 1.

The simplest approach for calling enriched regions in ChIP-seq data is to take a direct

census of mapped tag sites along the genome and allow every contiguous set of base pairs

with more than a threshold number of tags covering them to define an enriched sequence

region. While this can be effective for highly defined point source factors with strong ChIP

enrichment, it is not satisfactory overall due to inherent complexities of the signals as well

as experimental noise and/or artifacts. Additional information present in the data is now

used to help discriminate true positive signals from various artifacts. For example, the

strand-specific structure of the tag distribution is useful to discriminate the punctate class of

binding events from a variety of artifacts9. Because immunoprecipitated DNA fragments are

typically sequenced as single-ended reads, i.e. from one of the two strands in the 5′ to 3′

direction, the tags are expected to come on average equally frequently from each strand, thus

giving rise to 2 related distributions of stranded reads. The corresponding individual strand

distributions will occur upstream and downstream, shifted from the source point (“summit”)

by half-the average sequenced fragment length, which is typically referred to as the “shift”
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(Fig. 4a). Note that the average observed fragment length can differ considerably from the

“expected” fragment length derived from agarose gel cuts made during Illumina library

preparation; short fragments are further favored by Illumina’s solid-state PCR. For this

reason, the shift is now mainly determined computationally from the data, rather than

imposed from the molecular biology protocol. The shift will be smaller and the two strand

distributions will come closer together in experiments in which the fragment length, read-

length and recognition site length converge.

Building a signal profile

The signal profile is a smoothing of the tag counts to allow reliable region identification and

better summit resolution. The simplest way to define a signal profile is to slide a window of

fixed width across the genome, replacing the tag count at each site with the summed value

within the window centered at the site. Consecutive windows exceeding a threshold value

are merged. This is what cisGenome10 does. SiSSRs11, and spp12 count tags within a

window in a strand-specific fashion. Other programs also using sliding window scans, but

compute various modified signal values. The program MACS13 performs a window scan,

but only after shifting the tag data in a strand specific fashion to account for the fragment

length. F-Seq14 performs kernel density estimation (KDE) with a Gaussian kernel. QuEST9

creates separate KDE profiles for the two strands. SICER15 computes probability scores in

non-overlapping windows, then aggregates windows into “islands” of sub-threshold

windows separated by gaps in order to capture broad enrichment regions. An alternate

approach is to extend the ChIP-seq tags along their strand direction (called an ‘XSET’) and

to count overlaps above a threshold as peak regions16. Tag extension prior to signal

calculation serves the dual purpose of correcting for the assumed fragment length and also

smoothing over gaps that were not tagged due to low sampling or read mappability issues.

GLITR17 uses this algorithm. PeakSeq5 combines tag extensions with tag aggregation.

ERANGE4,18 aggregates tags within a fixed distance of one another into candidate peak

regions.

Strand-specific read shifting can yield significantly improved summit resolution as well as

greater sensitivity for punctate source calls, if the shift distance is accurate. If the shift is

badly misestimated, some true ChIP sites will not be called. Experiments with longer

average fragment lengths benefit more from read shifting because the effect is greater. The

read-shift distance used is generally either fixed to a user-specified value or it is estimated

from ChIP data; generally the latter is based upon high quality peaks only (those with very

large enrichment relative to background). MACS, QuEST, SiSSRs, and spp perform

mandatory tag shifting prior to generating a set of peak calls. ERANGE and FindPeaks19

offer it as an option, while cisGenome shifts tags only as a post-processing step to refine

binding site locations. F-Seq, GLITR, and SICER shift tags by a user-specified distance. Tag

extension can accomplish the same goals as tag shifting in many cases.

Handling the background

The background model consists of an assumed statistical noise distribution or a set of

assumptions that guide the use of control data to filter out certain types of false positives in

the treatment data. In the absence of control data, the background tag distribution is typically
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modeled with a Poisson or negative binomial distribution. When control data is available, it

may be used to determine parameters for these distributions. Alternatively, the control data

may be subtracted from the signal along the genome or the signal may be thresholded by its

enrichment ratio relative to the control. Using experimental control data is thought

important, because it significantly reduces false positive regions that come from DNA

shearing biases or sequencing artifacts. CisGenome, ERANGE, GLITR, MACS, PeakSeq,

QuEST, SICER, SiSSRs, spp, and USeq20 all use control data when it is available.

FindPeaks,F-Seq, XSET, and the approach of Mikkelsen et al.8 do not.

Peak call criteria

Once the signal profile has been generated and tags allocated to regions, those for which the

signal satisfies certain quality criteria are considered candidate peaks. The main quality

criterion is either an absolute signal threshold or a minimum enrichment relative to the

background or both. Specifics for various software implementations are given in Table 1.

Default values for these are provided, but users will need to consider whether their data is

similar enough to those on which a specific algorithm was tuned to justify using the defaults.

Some exploration of the parameter space may be helpful. Ideally, an end user would specify

a desired FDR, with parameters then set to achieve it for a given algorithm and dataset. A

few packages implement some version of this (see significance ranking below), but there is

no consensus yet on how to best estimate the FDR for ChIP-seq, and different methods

produce different outcomes. This is discussed further in the context of significance ranking.

Post-filtering

After the initial peak calling step, simple filters are optionally available to eliminate

artifacts. Two popular filtering criteria are based on the distributions of tags between the

DNA strands (directionality) and single site duplicates. Directionality criteria include:

fraction of plus and minus tags, fraction of plus(minus) tags occurring to the left(right) of

the putative peak, and the presence of a partnered plus(minus) peak for each minus(plus)

peak. Note that default values for the directionality filtering may be too stringent if data is

noisier than was seen in the first generation of experiments used to develop the algorithms.

Also, this filter may incorrectly reject complex peak regions, i.e. those that contain more

than one summit. QuEST, FindPeaks, and PeakSeq attempt to subdivide regions into more

than one summit call (multiple overlapping sources), however this remains an active area of

research. Duplicate filters are relatively straightforward and eliminate tags at single sites that

exhibit counts much greater than that expected by chance.

Significance ranking

Called peak regions encompass a wide range of quantitative enrichments, thus an assessment

of the relative confidence one should place in a given set of peaks or, if possible, each

individual peak is informative. Most of the algorithms currently compute p-values either

after the fact or as part of the peak calling procedure and these are provided with the output

peak list. As seen in Table 1, the packages that provide p and/or q values are: CisGenome,

ERANGE, GLITR, MACS, PeakSeq, SICER, spp, and USeq. A few callers do not provide

p-values, in which case the use of the peak height or fold-enrichment may be used to provide

a peak ranking, though not statistical significance. From an end user perspective, the false
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discovery rate is often of paramount interest and one can compute a p-value from a false

discovery rate or vice versa for a known distribution. Generally, however it is not known a

priori whether the distribution assumption made in calculating the p-value is appropriate,

thus the correct false discovery rate may be far different from the one based on the p-value

threshold. Therefore some programs (ERANGE, MACS, QuEST, spp, USeq) instead

compute an empirical FDR by calling peaks in a portion or all of the control data. The FDR

in this case is given as the ratio of the number of peaks called in the control to the number of

peaks called for the ChIP data.

Specialized software to analyze histone modification ChIP-seq data that start to address

higher-level analyses include ChIPDiff21 and ChromaSig22. ChIPDiff uses an HMM to

assess the differences in the histone modifications from the ChIP-seq signal between two

libraries, for example from different cell types. ChromaSig performs unsupervised learning

on ChIP-seq signals across multiple experiments to determine statistically significant

patterns of chromatin modifications.

Further subtleties in the ChIP-seq signal present challenges for both computation and

interpretation of downstream results. Some ChIP-seq peak regions are spatial or temporal

convolutions of multiple biologically true sources. In such cases, the highest density of reads

does not always correspond to a source point (Fig. 4b). This complexity can be magnified as

one moves from relatively large mammalian genomes with long stretches of intervening

DNA isolating regulatory modules from each other, to smaller genomes with potentially

higher densities of binding sites compressed in complicated modules. Computationally, this

turns the problem from one of peak identification to peak deconvolution. In regions where

this occurs the signal to noise characteristics usually determine whether it is feasible to

discriminate occupancy among the different individual sites. In the temporal case, a

transcription factor binding site that is bound in an undifferentiated cell type, for instance,

and not bound in a differentiated cell type, will be diluted relative to sites that are bound in

both states whenever the starting cell population is of mixture of the two cell type. In an

embryo or whole organism, a given factor may bind partly or entirely non-overlapping

regulatory modules, thus mixing signals that would otherwise be spatially and/or temporally

distinct in defined cell subpopulations.

Last but not least, the stochastic sampling of the DNA fragments means that, as more

sequencing is done in a given sample, additional weak but potentially significant signals will

continue to be discovered. How many of these are functionally important is not a priori

clear, without explicit testing. This uncertainty will affect how these weaker features are

used (or eliminated) for input into higher-level integrative analysis. Although weak sites can

be confirmed by different readouts from ChIP (QPCR; ChIP-chip), supported by in vitro

binding to the sequence, and by computational presence of binding motifs in the DNA,

utterly independent evidence of occupancy, such as that provided by in vivo foot-printing or

site-mutation in transfection assays, has yet to be marshaled for a convincingly large sample

of such “cryptic” ChIP-positive sites. What is certain, however, is that the complexity of the

ChIP library (how many different founder DNA fragments are captured for sequencing) and

the depth of sequencing must be properly adjusted to match the experimental goal and the

underlying biology. Thus chromatin marks that cover large areas of the genome call for
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deeper sequencing or for additional algorithmic inferences to define large signal domains,

compared with point source binding.

Transcriptome analysis of RNA-seq data

Transcriptome analysis has multiple functions, broadly divided between transcript discovery

and mapping on one hand and RNA quantification on the other. The software sub-tasks

needed for analysis depend on which of those two aspects are paramount in a given study.

The first generation of RNA-seq studies published in 200817,23-28 used very short, unpaired

reads (25-32 NT) of cDNA made by reverse-transcription of poly-A selected RNA (Fig. 5).

As longer read-lengths and larger numbers of reads have become routine in some platforms,

and as “mate-paired or paired-end” format have been added, the bioinformatics tools are

evolving to handle the changing data. Experimental protocol choices also affect the

downstream data analysis. For example, RNA fragmentation and size selection steps of

200bp fragment in current RNA-seq protocols will likely result in under-representation of

the shortest transcripts, as has already been noted29-30. Given keen interest in RNA-seq, it is

natural that platform vendors such as ABI and Illumina, and commercial software ventures,

are beginning to provide commercial packages, but we limit this overview to publicly

available packages connected to published papers (Table 2).

For a subset of RNA-seq users who work on organisms without a reference genome

sequence or aim to detect chimeric transcripts from chromosomal rearrangements such as

those found in tumors, analyzing the transcriptome involves assembling ESTs de novo using

short-read assembly programs such as Velvet31, which assemble sequences by assembling

reads that overlap by a pre-selected k-mer, i.e. by a minimum number of bases. Typically, a

finite range of k-mers are tried to find the optimal k-mer that will give the best assembly in

terms of both number and sizes of contigs/ESTs. Since short read assemblers are primarily

designed to assemble genomic sequence with relatively even depth of coverage, the five

orders of magnitude of prevalence in transcriptomes represent a difficult challenge32. A

recent study using ABySS33 assembled 764,365 ESTs from 194 million 36 bp reads from a

human follicular lymphoma transcriptome with k=28 bp; half of the 30 Mb of unique

sequence is found on contigs larger than 1.1 kb. At lower sequencing depths, de novo

assembly will work best for genes that are highly expressed enough to be tiled by reads that

overlap at the selected k-mer (Fig. 6a).

Mapping splices and multireads

For all other RNA-seq analyses with 10-100 million reads and where a reference genome is

known, the reads can be mapped as in ChIP-seq, but with the added opportunity to map

reads that cross splice junctions (Fig. 6b-c). Known splice junctions, based on gene models

and ESTs can be handled by incorporating them informatically in the primary read-mapping,

while newly inferred junctions are considered later. Once the reads are mapped, the question

of their correspondence with gene and transcript models arises, since it is common to have

more than one transcript type from a single gene, with alternate splicing, alternate promoter

use and different 3′ poly(A) addition sites all contributing diversity. More sophisticated

questions follow concerning the respective prevalences of each transcript isoform, and the

relative prevalence of RNAs within a given transcriptome. A final goal in a majority of
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transcriptome studies is to quantify differences in expression across multiple samples in

order to capture differential gene expression.

The main challenges of mapping RNA-seq reads center around the handling of splice

junctions, paralogous gene families and pseudogenes. Nearly all RNA-seq packages are built

on top of short read mappers such as bowtie34 and SOAP35 – and may require multiple runs

to map splice-crossing reads. The primary approach is to simply map the ungapped sequence

reads across sequences representing known splice junctions, which can also be

supplemented with any set of predicted splice junctions from spliced ESTs or gene finder

predictions as implemented by ERANGE or RNA-MATE36. However, all of these

approaches are ultimately limited to recovering previously documented splices.

Alternatively, packages such as TopHat32 and G-Mo.R-Se37 first identify enriched regions

representing transcribed fragments (transfrags) and build candidate exon-exon splice

junctions to map additional reads across, whereas QPALMA38 attempts to predict whether a

read is spliced as part of the mapping process.

Multireads, i.e. reads that map equally well to multiple genomic locations, arise

predominantly from conserved domains of paralogous gene families and repeats. Another

confounding problem is the prevalence SINEs and LINEs in the UTRs of genes as well as

the abundance of retroposed pseudogenes for highly expressed housekeeping genes in large

genomes. Both of these vary from one genome to the next39. For example, several GAPDH

retroposed pseudogenes in the mouse genome differ by less than 2 nucleotides (0.2%) from

the mRNA for GAPDH itself, making it difficult to map reads correctly to the originating

locus based on RNA-seq data alone. Orthogonal data such as RNApol2 occupancy and

ChIP-seq measurements can later be brought to bear in some cases, but different software

and use-parameters make starting choices based on the RNA data alone. While the

algorithms are generally sensible, specific cases can be insidious, and are worth being aware

of. For example, a minority of reads from one paralog can map best to other sites (usually

another paralog or pseudogene) because of the error rate in sequencing, which is quite

substantial on current platforms (typically around 1%). For highly expressed genes, this can

cause a shadow of expression at these pseudogenes – which may then be called as

transfrags. Similarly, reads that are intron-spanning from a source gene may map instead

perfectly and uniquely to a retroposed pseudogene. The ERANGE package avoids such mis-

assignment by mapping reads simultaneously across the genome and splice junctions, thus

turning them into multireads that are subsequently handled separately.

Assigning reads to known and new gene models

The next level of RNA-seq analysis associates mapped reads with known or novel gene

models. Given a set of annotations, all tools can tally the reads that fall on known gene

models, and several tools like RSAT40 and BASIS41 deal primarily with the annotated

models. However, a substantial fraction of reads fall outside of the annotated exons, above

the “noise” level generated by mismapped reads or intronic RNA from incompletely spliced

hnRNA. In mouse and human samples, we have especially noticed that prominent read

densities often extend well beyond the annotated 3’UTRs, or as alternatively spliced 5’UTR,

internal exons, or retained introns. ERANGE, G-Mo.R-Se, and TopHat first aggregate reads
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into transfrags. Whereas G-Mo.R-Se and TopHat rely primarily on spliced reads to connect

transfrags together, ERANGE uses two different strategies depending on the availability of

paired-reads. In currently conventional unpaired sequence read case, ERANGE assigns

transfrags to genes based on an arbitrary user-selected radius, whereas in the paired-end

case, it will bring together transfrags only when they are connected by at least one paired-

reads. Both strategies work much better with data that preserve RNA strandedness.

Quantifying gene expression

Given a gene model and mapped reads, one can sum the read counts for that gene as one

measure of the expression level of that gene at that sequencing depth. However, the number

of reads from a gene is naturally a function of the length of the mRNA as well as its molar

concentration. A simple solution that preserves molarity is to normalize the read-count by

the length of the mRNA and the number of million mappable reads to obtain Reads Per Kb

per Million (RPKM) values18. RPKMs for genes are then directly comparable within the

sample by providing a relative ranking of expression. While straightforward, RPKM values

have several substantive detail differences between software packages, and there are also

some caveats in using them. Whereas ERANGE uses a union of known and novel exon

models to aggregate reads and determine an RPKM value for the locus, TopHat and RSAT

restrict themselves to known or pre-specified exons. ERANGE will also include spliced

reads and can include assigned multireads in its RPKM calculation, whereas other packages

limit themselves to uniquely mappable reads.

Several experimental issues influence the RPKM quantification, including the integrity of

the input RNA, the extent of ribosomal RNA remaining in the sample, size selection steps,

and the accuracy of the gene models used. RPKMs reflect the true RNA concentration best

when samples have relatively uniform sequence coverage across the entire gene model,

which is usually approached by using random priming or RNA-ligation protocols, although

both currently fall short of desired uniformity. Poly(A) priming has different biases (3′) from

partial extension or when there is partial RNA degradation. Resulting ambiguities in RPKMs

from an RNA-seq experiment are akin to microarray intensities that need to be further post-

processed before comparison to other RNA-seq samples using any number of well-

documented normalization methods such as variance stabilization42, for example.

More sophisticated analyses of RNA-seq data allow users to extract additional information

from the data. One area of considerable interest and activity is in transcript modeling and

quantifying specific isoforms. BASIS calculates transcript levels from coverage of known

exons by taking advantage of specifically informative nucleotides from each transcript

isoform. A second area is sequence variation. The RNA sequences themselves can be mined

to identify positions where the base reported differs from the reference genome(s),

identifying either a single-nucleotide polymorphism or a private mutation25,43. When these

are heterozygous and phased or informatively related to the source genome, RNA SNPs can

be used to detect allele-specific gene expression. Yet another source of observed sequence

differences between the transcriptome and genome are changes due to RNA-editing44. In

general, bioinformatics tools are evolving to match changes in sequencing technology.

Longer and more informative reads produce a higher fraction of uniquely mappable reads

Pepke et al. Page 10

Nat Methods. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



that cross one or more splice junctions, which calls for changes in transcript mapping and

assembly. Paired reads with good control over insert size distribution (i.e. tight size

distributions) will provide a superior substrate for determining long-range isoform structure

and quantifying them. We also expect that strand-reporting protocols45 will be more widely

used and that they will help to disambiguate instances where both strands are represented or

where the strand of origin is entirely unknown.

Future opportunities and challenges

A virtue of sequence-based RNA and ChIP datasets is that the raw unmapped reads can be

re-analyzed to gain the benefits of ongoing algorithmic improvements and updated genome

references and gene models, including SNP anotations and, eventually, source DNA

sequences from the same individuals or cell lines used for RNA and ChIP experiments.

Beyond these incremental changes, major improvements are anticipated for both ChIP-seq

and RNA-seq that will require substantial algorithmic advances. Variations on chromatin

conformation capture (3C)46 and their combination with ChIP-seq in genome-wide formats

promise to provide physical linkages between distal (even transchromosmal) regulatory

elements and the genes that they regulate47. They call for new algorithms and software to

find, cull, quantify and ultimately integrate longer-range physical interactions in the nucleus

with the kind of occupancy and chromatin state information now being gathered. The

current forms of RNA-seq will likely transition to a more quantitative form of “universal”

RNA-seq that captures short and long RNAs while preserving strand origin without poly(A)

selection48. Whereas ChIP-seq is less likely to benefit from the substantially longer reads

promised by the upcoming generation of DNA sequencers, these will be invaluable to RNA-

seq as most transcripts will be unambiguously sequenced as a single “read”.

Growth of publicly available ChIP-seq and RNA-seq datasets will increasingly drive

integrated computational analysis that aims to address basic questions about how the

chemical code of in vivo DNA binding for multiple factors relates to transcription output.

ChIP-seq experiments, just as ChIP-chip experiments before them, reveal thousands of

reproducible binding events that do not follow the simplest possible logic of a predictable

positive or negative effect on the nearest promoter. What is the logic? How can functionally

important sites of occupancy can be discerned computationally and discriminated from

others that are inactive or differently active sites? Computational integration of factor

binding, histone marks, polymerase loading, methylation and other genome-wide data will

be pursued to learn if highly combinatorial models of inputs can predict regulatory output.

Finally, further integrative analyses that draw on data from RNAi perturbations and high-

throughput functional element assays will likely be needed to extract functionally the

important connections and relationships of a working regulatory code.
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Figure 1. A hierachical overview of ChIP-seq and RNA-seq analyses
The bottom-up analysis of ChIP-seq and RNA-seq data typically involves the use of several

software packages whose output serves as the input of the higher level analyses, with the

subsections covered by this review circled in red. Apart from de novo transcript assembly

for organisms without a reference genome, all sequence-counting packages build upon the

output of read mappers onto a reference sequence, which serves as the input of programs

that aggregate and identify these reads into enriched regions, density of known exons; many

of these programs will further try to identify the sources (ChIP-seq) or novel RNA-seq

transcribed fragments (transfrags). These regions and sources can then be analyzed to

identify motifs, genes, or expression levels that are typically considered the biologically

relevant output of these analyses. As the amount of RNA-seq and ChIP-seq data rapidly

accumulates, the need for packages supporting integrative analyses is becoming increasingly

pressing.
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Figure 2. ChIP-seq Peak Types From Various Experiments and Peak Calling
Data shown in (a-c) are from remapping of a previously published human ChIP-seq dataset7.

(a) Proteins that bind DNA in a site-specific fashion such as CTCF form narrow peaks 100’s

bp wide. The difference of plus and minus read counts is generally expected to cross zero

near the signal source, the source in this example being the CTCF motif indicated in red. (b)

Signal from enzymes such as RNA Polymerase II may show enrichment over regions up to a

few kb in length. (c) Experiments that probe larger scale chromatin structure such as the

repressive mark for H3K27me3 may yield very broad “above”-background regions spanning

several 100 kb’s.

Pepke et al. Page 16

Nat Methods. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. ChIP-seq Peak Calling sub-tasks
Sequence reads are first aligned to the genome. A signal profile that takes on a value at each

bp is formed via a census algorithm, e.g. counting the number of reads overlapping each

base pair along the genome (upper left plot). In the figure, blue represents ‘+’ strand reads,

red represents ‘−‘ strand reads, and purple shows the combined distribution after shifting the

‘+’ and ‘−‘ reads toward the center by the read shift value. Further processing is sometimes

performed prior to evaluating the signal (strand-specific tag shifting or smoothing for

example). If experimental control data is available (brown), the same processing steps are

applied to it to form a background profile (upper right plot); otherwise, a random genomic

background may be assumed. The signal and background profiles are compared in order to

define regions of enrichment. Finally, peaks are filtered to reduce false positives and ranked

according to relative strength or statistical significance. In the lower left figure, P(s) refers to

the probability of observing a location with s reads covering it. The bars represent the

control data distribution. A hypothetical Poisson distribution fit is shown with sthresh

indicating a cutoff above which a ChIP-seq peak might be considered significant. The lower

right is a schematic representation of two types of artifactual peaks that may be filtered

separately: single strand peaks and peaks formed by multiple occurrences of only one or a

few reads.
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Figure 4. The impact of Fragment Length and Complex Peak Structures in ChIP-seq
(a) The average DNA fragment length can affect resolution with respect to binding site

determination. A ChIP-seq experiment yields distributions for tags sequenced from the

forward and reverse strands, the maxima of which should be separated by the average

fragment length. In real experimental data, an overlap of the two distributions is often

observed. If the average fragment length is much longer than the width of the strand

distributions, the binding site will fall in between the two distributions. Tag locations are

shifted toward the middle will result in a single summit (top illustration). Intermediate

fragment lengths yield a single broadened peak in the unshifted aggregate distribution, and

tag shifting may improve resolution a small amount by more precisely locating the summit

(middle illustration). Very short fragments, such that the strand-specific densities are

separated by a distance significantly less than the width of the individual distributions, can

yield good binding site resolution without tag shifting tag. (b) Overlapping tag distributions
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are observed for clusters of nearby peaks such as the pictured double for a CTCF peak

region in human7. Motif mapping reveals two CTCF binding sites (in red), though ChIP-seq

signal suggests a single binding site call lying between the two motifs. As an example, the

ERANGE region call (orange) is shown to cover both motifs. The problem of reliably

discriminating multiple binding sites with very closely overlapping signals is an ongoing

area of research.
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Figure 5. Overview of RNA-seq
A RNA fraction of interest is selected, fragmented, and reverse transcribed. The resulting

cDNA can then be sequenced using any of the current ultra-high-throughput technologies to

obtain ten to a hundred million reads, which are then mapped back onto the genome. The

reads are then analyzed to calculate expression levels.
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Figure 6. Approaches to handling of spliced reads
(a) In de novo transcriptome assembly, splice-crossing reads (red) are no different than any

other reads, but will only contribute to a contig (solid green), when the reads are at high

enough density to overlap by more than a set of user-defined assembly parameters. Parts of

gene models (dotted green) or entire gene models (dotted magenta) can be missed if

expressed at sub-threshold. (b) Splice crossing reads can be mapped directly onto the

genome if the reads are long enough to make gapped-read mappers practical. (c)

Alternatively, regular short read mappers can be used to map spliced reads ungapped onto

supplied additional known or predicted splice junctions.
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