Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly efficient blue electroluminescence based on thermally activated delayed fluorescence

Abstract

Organic compounds that exhibit highly efficient, stable blue emission are required to realize inexpensive organic light-emitting diodes for future displays and lighting applications. Here, we define the design rules for increasing the electroluminescence efficiency of blue-emitting organic molecules that exhibit thermally activated delayed fluorescence. We show that a large delocalization of the highest occupied molecular orbital and lowest unoccupied molecular orbital in these charge-transfer compounds enhances the rate of radiative decay considerably by inducing a large oscillator strength even when there is a small overlap between the two wavefunctions. A compound based on our design principles exhibited a high rate of fluorescence decay and efficient up-conversion of triplet excitons into singlet excited states, leading to both photoluminescence and internal electroluminescence quantum yields of nearly 100%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures and distribution of HOMO and LUMO in 1a, 2a, 2b and 2c.
Figure 2: Photoluminescence processes of 1a (top) and 2a (bottom).
Figure 3: Electroluminescence characteristics of OLEDs using emitter layers containing 1a and 2a–c as guests and photoluminescence characteristics of the emitter layers.

Similar content being viewed by others

References

  1. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  2. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    Article  CAS  Google Scholar 

  3. Kim, S. et al. Low-power flexible organic light-emitting diode display device. Adv. Mater. 23, 3511–3516 (2011).

    Article  CAS  Google Scholar 

  4. Yu, Z., Niu, X., Liu, Z. & Pei, Q. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 23, 3989–3994 (2011).

    Article  CAS  Google Scholar 

  5. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  CAS  Google Scholar 

  6. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001).

    Article  CAS  Google Scholar 

  7. Deaton, J. C. et al. E-type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: Harvesting singlet and triplet excitons in OLEDs. J. Am. Chem. Soc. 132, 9499–9508 (2010).

    Article  CAS  Google Scholar 

  8. Hashimoto, M. et al. Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. J. Am. Chem. Soc. 133, 10348–10351 (2011).

    Article  CAS  Google Scholar 

  9. Okumoto, K., Kanno, H., Hamada, Y., Takahashi, H. & Shibata, K. Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%. Appl. Phys. Lett. 89, 063504 (2006).

    Article  Google Scholar 

  10. Kondakov, D. Y. Characterization of triplet–triplet annihilation in organic light-emitting diodes based on anthracene derivatives. J. Appl. Phys. 102, 114504 (2007).

    Article  Google Scholar 

  11. Kondakov, D. Y., Pawlik, T. D., Hatwar, T. K. & Spindler, J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J. Appl. Phys. 106, 124510 (2009).

    Article  Google Scholar 

  12. Fukagawa, H. et al. Anthracene derivatives as efficient emitting hosts for blue organic light-emitting diodes utilizing triplet–triplet annihilation. Org. Electron. 13, 1197–1203 (2012).

    Article  CAS  Google Scholar 

  13. Endo, A. et al. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes—a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009).

    Article  CAS  Google Scholar 

  14. Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).

    Article  Google Scholar 

  15. Nakagawa, T., Ku, S. Y., Wong, K. T. & Adachi, C. Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor–acceptor structure. Chem. Commun. 48, 9580–9582 (2012).

    Article  CAS  Google Scholar 

  16. Lee, S. Y., Yasuda, T., Nomura, H. & Adachi, C. High-efficiency organic light-emitting diodes utilizing thermally-activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules. Appl. Phys. Lett. 101, 093306 (2012).

    Article  Google Scholar 

  17. Mehes, G., Nomura, H., Zhang, Q., Nakagawa, T. & Adachi, C. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 51, 11311–11315 (2012).

    Article  CAS  Google Scholar 

  18. Zhang, Q. et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 134, 14706–14709 (2012).

    Article  CAS  Google Scholar 

  19. Tanaka, H., Shizu, K., Miyazaki, H. & Adachi, C. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative. Chem. Commun. 48, 11392–11394 (2012).

    Article  CAS  Google Scholar 

  20. Sato, K. et al. Organic luminescent molecule with energetically equivalent singlet and triplet excited states for organic light-emitting diodes. Phys. Rev. Lett. 110, 247401 (2013).

    Article  Google Scholar 

  21. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  Google Scholar 

  22. Li, J. et al. Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivatives. Adv. Mater. 25, 3319–3323 (2013).

    Article  CAS  Google Scholar 

  23. Lee, J. et al. Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes. J. Mater. Chem. C 1, 4599–4604 (2013).

    Article  CAS  Google Scholar 

  24. Nakanotani, H., Masui, K., Nishide, J., Shibata, T. & Adachi, C. Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Sci. Rep. 3, 2127 (2013).

    Article  CAS  Google Scholar 

  25. Tomas Serevičius, T. et al. Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole-triazine derivative. Phys. Chem. Chem. Phys. 15, 15850–15855 (2013).

    Article  Google Scholar 

  26. Peng, Q. et al. Evidence of the reverse intersystem crossing in intra-molecular charge-transfer fluorescence-based organic light-emitting device through magneto-electroluminescence measurements. Adv. Opt. Mater. 1, 362–366 (2013).

    Article  Google Scholar 

  27. Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photon. 8, 326–332 (2014).

    Article  CAS  Google Scholar 

  28. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photon. 6, 253–258 (2012).

    Article  CAS  Google Scholar 

  29. Strickler, S. J. & Berg, R. A. Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–822 (1962).

    Article  CAS  Google Scholar 

  30. Mulliken, R. S. Intensities of electronic transitions in molecular spectra I. Introduction. J. Chem. Phys. 7, 14–20 (1939).

    Article  CAS  Google Scholar 

  31. Jeon, S. O. & Lee, J. Y. Phosphine oxide derivatives for organic light emitting diodes. J. Mater. Chem. 22, 4233–4243 (2012).

    Article  CAS  Google Scholar 

  32. Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013).

    Article  CAS  Google Scholar 

  33. Frisch, M. J. et al. Gaussian 09, Revision A.02. (Gaussian, 2004)

  34. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  35. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  36. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  37. Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) and the International Institute for Carbon Neutral Energy Research (WPI-I2CNER) sponsored by MEXT. The authors thank K. Tokumaru for stimulating discussions regarding this work. The authors also thank W. J. Potscavage Jr for assistance with preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and C.A. wrote the manuscript. S.H. proposed the delocalization of molecular orbitals and designed the compounds. S.H., Y.S. and H.T. synthesized the compounds. K.S. helped with calculations and S.Y.L., H.N. and N.N. helped with purification of the compounds. S.H. and K.M. fabricated devices with the aid of M.Y. and H.N. S.H., K.S. and K.M. measured photophysical characteristics. S.H. and Y.S. performed analyses. C.A. supervised TADF research. All authors discussed the progress of research and reviewed the manuscript.

Corresponding author

Correspondence to Chihaya Adachi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, S., Sakai, Y., Masui, K. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Mater 14, 330–336 (2015). https://doi.org/10.1038/nmat4154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing