Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Catalytically highly active top gold atom on palladium nanocluster

Abstract

Catalysis using gold is emerging as an important field of research in connection with ‘green’ chemistry1,2,3. Several hypotheses have been presented to explain the markedly high activities of Au catalysts4,5,6,7,8,9,10. So far, the origin of the catalytic activities of supported Au catalysts can be assigned to the perimeter interfaces between Au nanoclusters and the support11. However, the genesis of the catalytic activities of colloidal Au-based bimetallic nanoclusters is unclear. Moreover, it is still a challenge to synthesize Au-based colloidal catalysts with high activity. Here we now present the ‘crown-jewel’ concept (Supplementary Fig. S1) for preparation of catalytically highly Au-based colloidal catalysts. Au–Pd colloidal catalysts containing an abundance of top (vertex or corner) Au atoms were synthesized according to the strategy on a large scale. Our results indicate that the genesis of the high activity of the catalysts could be ascribed to the presence of negatively charged top Au atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Experimental characterization and theoretical modelling of CJ-Au/Pd NCs.
Figure 3: Comparison of the catalytic activity of CJ-Au/Pd, Au, Pd and Pd/Au alloy NCs for aerobic glucose oxidation.
Figure 4: Theoretical electronic calculation of Pd and CJ-Au/Pd NCs containing 55 atoms.

Similar content being viewed by others

References

  1. Enache, D. I. et al. Solvent-free oxidation of primary alcohols to aldehydes using titania-supported gold–palladium catalysts. Science 311, 362–365 (2006).

    Article  CAS  Google Scholar 

  2. Comotti, M., Della Pina, C., Falletta, E. & Rossi, M. Is the biochemical route always advantageous? The case of glucose oxidation. J. Catalys. 244, 122–125 (2006).

    Article  CAS  Google Scholar 

  3. Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005).

    Article  CAS  Google Scholar 

  4. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    Article  CAS  Google Scholar 

  5. Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bull. 37, 27–36 (2004).

    Article  CAS  Google Scholar 

  6. Wang, J. G. & Hammer, B. Oxidation state of oxide supported nanometric gold. Top. Catal. 44, 49–56 (2007).

    Article  CAS  Google Scholar 

  7. Lopez, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catalys. 223, 232–235 (2004).

    Article  CAS  Google Scholar 

  8. Sanchez, A. et al. When gold is not noble: Nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).

    Article  CAS  Google Scholar 

  9. Xu, Y. & Mavrikakis, M. Adsorption and dissociation of O2 on gold surfaces: Effect of steps and strain. J. Phys. Chem. B 107, 9298–9307 (2003).

    Article  CAS  Google Scholar 

  10. Haruta, M. & Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A 222, 427–437 (2001).

    Article  CAS  Google Scholar 

  11. Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 3, 75–87 (2003).

    Article  CAS  Google Scholar 

  12. Chen, M. S., Kumar, D., Yi, C. W. & Goodman, D. W. The promotional effect of gold in catalysis by palladium–gold. Science 310, 291–293 (2005).

    Article  CAS  Google Scholar 

  13. Edwards, J. K. et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009).

    Article  CAS  Google Scholar 

  14. Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  15. Campbell, C. T. The active site in nanopaticle gold catalysis. Science 306, 234–235 (2004).

    Article  CAS  Google Scholar 

  16. Lemire, C., Meyer, R., Shaikhutdinov, S. & Freund, H. J. Do quantum size effects control CO adsorption on gold nanoparticles? Angew. Chem. Int. Ed. 43, 118–121 (2004).

    Article  Google Scholar 

  17. Zanella, R., Giorgio, S., Shin, C. H., Henry, C. R. & Louis, C. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catalys. 222, 357–367 (2004).

    Article  CAS  Google Scholar 

  18. Toshima, N., Kanemaru, M., Shiraishi, Y. & Koga, Y. Spontaneous formation of core/shell bimetallic nanoparticles: A calorimetric study. J. Phys. Chem. B 109, 16326–16331 (2005).

    Article  CAS  Google Scholar 

  19. Toshima, N., Ito, R., Matsushita, T. & Shiraishi, Y. Trimetallic nanoparticles having a Au-core structure. Catal. Today 122, 239–244 (2007).

    Article  CAS  Google Scholar 

  20. Li, Z. Y. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008).

    Article  CAS  Google Scholar 

  21. Ajayan, P. M. & Marks, L. D. Experimental-evidence for quasimelting in small particles. Phys. Rev. Lett. 63, 279–282 (1989).

    Article  CAS  Google Scholar 

  22. Egerton, R. F. Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, 1996).

    Book  Google Scholar 

  23. Comotti, M., Della Pina, C., Matarrese, R. & Rossi, M. The catalytic activity of naked gold particles. Angew. Chem. Int. Ed. 43, 5812–5815 (2004).

    Article  CAS  Google Scholar 

  24. Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the active sites of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).

    Article  CAS  Google Scholar 

  25. Vang, R. T. et al. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nature Mater. 4, 160–162 (2005).

    Article  CAS  Google Scholar 

  26. Tsunoyama, H., Ichikuni, N., Sakurai, H. & Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009).

    Article  CAS  Google Scholar 

  27. Chaki, N. K., Tsunoyama, H., Negishi, Y., Sakurai, H. & Tsukuda, T. Effect of Ag-doping on the catalytic activity of polymer-stabilized Au clusters in aerobic oxidation of alcohol. J. Phys. Chem. C 111, 4885–4888 (2007).

    Article  CAS  Google Scholar 

  28. Kim, Y. D., Fischer, M. & Ganteför, G. Origin of unusual catalytic activities of Au-based catalysts. Chem. Phys. Lett. 377, 170–176 (2003).

    Article  CAS  Google Scholar 

  29. Beltrame, P., Comotti, M., Della Pina, C. & Rossi, M. Aerobic oxidation of glucose II. Catalysis by colloidal gold. Appl. Catal. A 297, 1–7 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Grants-in-Aid from the Core Research for Evolutional Science and Technology (CREST) program sponsored by the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

M.H. and N.T. planned the project, H.Z. designed and carried out experiments and data analyses, T.W. helped with ICP data analyses, M.O. carried out DFT calculation, N.T. proposed and supervised the project and H.Z. and N.T. prepared the manuscript. All the authors participated in discussion of the research.

Corresponding author

Correspondence to Naoki Toshima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Watanabe, T., Okumura, M. et al. Catalytically highly active top gold atom on palladium nanocluster. Nature Mater 11, 49–52 (2012). https://doi.org/10.1038/nmat3143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing