Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Irreversible nanogel formation in surfactant solutions by microporous flow

Abstract

Self-assembly of surfactant molecules into micelles of various shapes and forms has been extensively used to synthesize soft nanomaterials. Translucent solutions containing rod-like surfactant micelles can self-organize under flow to form viscoelastic gels. This flow-induced structure (FIS) formation has excited much fundamental research and pragmatic interest as a cost-effective manufacturing route for active nanomaterials. However, its practical impact has been very limited because all reported FIS transitions are reversible because the gel disintegrates soon after flow stoppage. We present a new microfluidics-assisted robust laminar-flow process, which allows for the generation of extension rates many orders of magnitude greater than is realizable in conventional devices, to produce purely flow-induced permanent nanogels. Cryogenic transmission electron microscopy imaging of the gel reveals a partially aligned micelle network. The critical flow rate for gel formation is consistent with the Turner–Cates fusion mechanism, proposed originally to explain reversible FIS formation in rod-like micelle solutions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shear-induced structure formation in macroscopic flow.
Figure 2: Irreversible gelation in microporous medium flow.
Figure 3: Gel phase suspended in clear fluid.
Figure 4: Cryo-TEM image of nanogel.

Similar content being viewed by others

References

  1. Rehage, H., Wunderlich, I. & Hoffman, H. Shear induced phase transitions in dilute aqueous surfactant solutions. Prog. Colloid. Polym. Sci. 72, 51–59 (1986).

    Article  CAS  Google Scholar 

  2. Wunderlich, I., Hoffmann, H. & Rehage, H. Flow birefringence and rheological measurements on shear induced micellar structures. Rheol. Acta 26, 532–542 (1987).

    Article  CAS  Google Scholar 

  3. Vasudeven, M., Shen, A., Khomami, B. & Sureshkumar, R. Self-similar shear-thickening behaviour in CTAB/NaSal surfactant solutions. J. Rheol. 52, 527–550 (2008).

    Article  Google Scholar 

  4. Liu, C. & Pine, D. J. Shear induced gelation and fracture in micellar solutions. Phys. Rev. Lett. 77, 2121–2124 (1996).

    Article  CAS  Google Scholar 

  5. Hu, Y. T., Boltenhagen, P. & Pine, D. J. Shear thickening in low concentration solutions of wormlike micelles I. Direct visualization of transient behaviour and phase transitions. J. Rheol. 42, 1185–1208 (1998).

    Article  CAS  Google Scholar 

  6. Hu, Y. & Matthys, E. F. The effects of salts on the rheological characteristics of a drag-reducing cationic surfactant solution with shear-induced micellar structures. Rheol. Acta 35, 470–480 (1996).

    Article  CAS  Google Scholar 

  7. Hu, Y. & Matthys, E. F. Characterization of micellar structure dynamics for a drag reducing surfactant solution under shear: Normal stress studies and flow geometry effects. Rheol. Acta 34, 450–460 (1995).

    Article  CAS  Google Scholar 

  8. Cressely, R. & Hartmann, V. Rheological behaviour and shear thickening exhibited by aqueous CTAB micellar solutions. Eur. Phys. J. B 6, 57–62 (1998).

    Article  CAS  Google Scholar 

  9. Cappelaere, E., Cressely, R., Makhloufi, R. & Decruppe, J. P. Temperature and flow-induced viscosity transitions for CTAB surfactant solutions. Rheol. Acta 33, 431–437 (1994).

    Article  CAS  Google Scholar 

  10. Hartmann, V. & Cressely, R. Influence of sodium salicylate on the rheological behaviour of an aqueous CTAB solution. Colloids Surf. 121, 151–162 (1997).

    Article  CAS  Google Scholar 

  11. Hartmann, V. & Cressely, R. Occurrence of shear thickening in aqueous micellar solutions of CTAB with some added organic counterions. Colloid Polym. Sci. 276, 169–175 (1998).

    CAS  Google Scholar 

  12. Hartmann, V. & Cressely, R. Shear thickening of an aqueous micellar solution of cetyltrimethylammonium bromide and sodium tosylate. J. Phys. II 7, 1087–1098 (1997).

    CAS  Google Scholar 

  13. Hartmann, V. & Cressely, R. Simple salts effects on the characteristics of the shear thickening exhibited by an aqueous micellar solution of CTAB/NaSal. Europhys. Lett. 40, 691–696 (1997).

    Article  CAS  Google Scholar 

  14. Kim, W. & Yang, S. Effects of sodium salicylate on the microstructure of an aqueous micellar solution and its rheological responses. J. Colloid Interface. Sci. 232, 225–234 (2000).

    Article  CAS  Google Scholar 

  15. Wheeler, E. K., Fischer, P. & Fuller, G. G. Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. J. Non-Newton. Fluid 75, 193–208 (1998).

    Article  CAS  Google Scholar 

  16. Nowak, M. Elastic properties of a dilute surfactant solution in the shear induced state. Rheol. Acta 40, 366–372 (2001).

    Article  CAS  Google Scholar 

  17. Nowak, M. Shear induced phase separation in cationic surfactant solutions around a rotating sphere. Rheol. Acta 37, 336–344 (1998).

    Article  CAS  Google Scholar 

  18. Prötzl, B. & Springer, J. Light scattering experiments on shear induced structures of micellar solutions. J. Colloid Interface Sci. 190, 327–333 (1997).

    Article  Google Scholar 

  19. Bandyopadhyaya, R., Basappa, G. & Sood, A. K. Observation of chaotic dynamics in dilute sheared aqueous solutions of CTAT. Phys. Rev. Lett. 84, 2022–2025 (2000).

    Article  Google Scholar 

  20. Britton, M. M. & Callaghan, P. T. Shear banding instability in wormlike micellar solutions. Eur. Phys. J. B 7, 237–249 (1999).

    Article  CAS  Google Scholar 

  21. Britton, M. M. & Callaghan, P. T. Two-phase shear band structures at uniform stress. Phys. Rev. Lett. 78, 4930–4933 (1997).

    Article  CAS  Google Scholar 

  22. Rehage, H. & Hoffmann, H. Viscoelastic surfactant solutions: Model systems for rheological research. Mol. Phys. 74, 933–973 (1991).

    Article  CAS  Google Scholar 

  23. Keller, S. L., Boltenhagen, P., Pine, D. & Zasadzinski, J. A. Direct observation of shear-induced structures in wormlike micellar solutions by freeze-fracture electron microscopy. Phys. Rev. Lett. 80, 2725–2728 (1998).

    Article  CAS  Google Scholar 

  24. Shikata, T., Sakaiguchi, Y., Uragami, H., Tamura, A. & Hirata, H. Enormously elongated cationic surfactant micelle formed in CTAB-aromatic additive systems. J. Colloid Interface Sci. 119, 291–293 (1987).

    Article  CAS  Google Scholar 

  25. Lin, Z. et al. Influence of surfactant concentration and counterion to surfactant ratio on rheology of wormlike micelles. J. Colloid Interface Sci. 239, 543–554 (2001).

    Article  CAS  Google Scholar 

  26. Lin, Z., Cai, J. J., Scriven, L. E. & Davis, H. T. Spherical-to-wormlike micelle transition in CTAB solutions. J. Phys. Chem. 98, 5984–5993 (1994).

    Article  CAS  Google Scholar 

  27. Kim, W. & Yang, S. Flow-induced silica structure during in situ gelation of wormy micellar solutions. Langmuir 16, 4761–4765 (2000).

    Article  CAS  Google Scholar 

  28. Kim, W. & Yang, S. Flow-induced microstructure in aqueous cationic surfactant solution in the presence of structure-enhancing additives. J. Chem. Eng. Jpn 34, 227–231 (2001).

    Article  CAS  Google Scholar 

  29. Kim, W. & Yang, S. Helical mesostructured tubules from Taylor vortex-assisted surfactant templates. Adv. Mater. 13, 1191–1195 (2001).

    Article  CAS  Google Scholar 

  30. Kim, W. & Yang, S. Preparation of mesoporous materials from the flow-induced microstructure in aqueous surfactant solutions. Chem. Mater. 12, 3227–3235 (2000).

    Article  CAS  Google Scholar 

  31. Garg, G., Hassan, P. A. & Kulshreshtha, S. K. Dynamic light scattering studies of rod-like micelles in dilute and semi-dilute regime. Colloids Surf. A 275, 161–167 (2006).

    Article  CAS  Google Scholar 

  32. Macías, E. R. et al. On the shear thickening flow of dilute CTAT worm-like micellar solutions. J. Rheol. 47, 643–658 (2003).

    Article  Google Scholar 

  33. Fielding, S. M. & Olmsted, P. D. Kinetics of the shear banding instability. Phys. Rev. E 68, 036313 (2003).

    Article  CAS  Google Scholar 

  34. Fielding, S. M. & Olmsted, P. D. Spatio-temporal oscillations and rheochaos in a simple model of shear banding. Phys. Rev. Lett. 92, 084502 (2004).

    Article  CAS  Google Scholar 

  35. Fielding, S. M. & Olmsted, P. D. Nonlinear dynamics of an interface between shear bands. Phys. Rev. Lett. 96, 104502 (2006).

    Article  CAS  Google Scholar 

  36. Boek, E. S., den Otter, W. K., Briels, W. J. & Iakovlev, D. Molecular-dynamics simulation of amphiphilic bilayer membranes and wormlike micelles: A multi-scale modelling approach to the design of viscoelastic surfactant solutions. Phil. Trans. R. Soc. Lond. A 362, 1625–1638 (2004).

    Article  CAS  Google Scholar 

  37. Padding, J. T., Boek, E. S. & Briels, W. J. Rheology of wormlike micellar fluids from Brownian and molecular dynamics simulations. J. Phys. Condens. Matter 17, S3347–S3353 (2005).

    Article  CAS  Google Scholar 

  38. Huang, C. C., Xu, H. & Ryckaert, J. P. Kinetics and dynamics of wormlike micelles under shear. Europhys. Lett. 81, 58002 (2008).

    Article  Google Scholar 

  39. Cates, M. E. Reptation of living polymers: Dynamics of entangled polymers in presence of reversible chain-scission reactions. Macromolecules 20, 2289–2296 (1987).

    Article  CAS  Google Scholar 

  40. Turner, M. S. & Cates, M. E. Flow-induced phase transitions in rod-like micelles. J. Phys. Condens. Matter 4, 3719–3741 (1992).

    Article  Google Scholar 

  41. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Clarendon, 1986).

    Google Scholar 

  42. McCabe, W. L., Smith, J. C. & Harriott, P. Unit Operations of Chemical Engineering (McGraw-Hill, 1993).

    Google Scholar 

  43. Berret, J.-F., Gamez-Corrales, R., Lerouge, S. & Decruppe, J.-P. Shear-thickening transition in surfactant solutions: New experimental features from rheology and flow birefringence. Eur. Phys. J. E 2, 343–350 (2000).

    Article  CAS  Google Scholar 

  44. Oelschlaeger, Cl., Waton, G., Candau, S. J. & Cates, M. E. Structural, kinetics and rheological properties of low ionic strength dilute solutions of a dimeric (gemini) surfactant. Langmuir 18, 7625–7271 (2002).

    Google Scholar 

  45. Oelschlaeger, Cl., Waton, G. & Candau, S. J. Rheological behaviour of locally cylindrical micelles in relation to their overall morphology. Langmuir 19, 10495–10500 (2003).

    Article  CAS  Google Scholar 

  46. Frounfelker, B. D., Kalur, G. C., Cipriano, B. H., Danino, D. & Raghavan, S. R. Persistence of birefringence in sheared solutions of wormlike micelles. Langmuir 25, 167–172 (2009).

    Article  CAS  Google Scholar 

  47. Diat, O. & Roux, D. Preparation of monodisperse multilayer vesicles of controlled size and high encapsulation ratio. J. Phys. II France 3, 9–14 (1993).

    Article  CAS  Google Scholar 

  48. Diat, O., Roux, D. & Nallet, F. Effect of shear on a lyotropic lamellar phase. J. Phys. II France 3, 1427–1452 (1993).

    Article  CAS  Google Scholar 

  49. Sierro, P. & Roux, D. Structure of a lyotropic lamellar phase under shear. Phys. Rev. Lett. 78, 1496–1499 (1997).

    Article  CAS  Google Scholar 

  50. Pasquali, M. Swell properties and swift processing. Nature Mater. 3, 509–510 (2004).

    Article  CAS  Google Scholar 

  51. Joshi, A. et al. Nanotube-assisted protein deactivation. Nature Nanotech. 3, 41–45 (2008).

    Article  CAS  Google Scholar 

  52. Xia, Y. N. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge NSF grants CBET 0404243 (A.Q.S., R.S.), CBET 0853735 (R.S.), CBET CAREER 0645062 (A.Q.S.) and DMI CAREER 0449258 (R.K., H.K.) for support of this work. R.S. acknowledges insightful discussions with R. G. Larson and Z. Wang during his sabbatical at University of Michigan, Ann Arbor, and M. Cates and A. Morozov during his visit to University of Edinburgh.

Author information

Authors and Affiliations

Authors

Contributions

M.V., R.S. and A.Q.S. planned and designed the microfluidic experiments. M.V. carried out rheological characterization and microfluidic experiments with the help of E.B., analysed and interpreted the data as well as prepared the manuscript under the guidance of R.S., A.Q.S. and B.K. M.V. and H.K. conducted AFM characterization of the dried gel under the guidance of R.K. D.L. carried out cryo-TEM imaging of the gel and interpreted the data with guidance from A.Q.S. and R.S.

Corresponding author

Correspondence to Radhakrishna Sureshkumar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Supplementary Information (PDF 457 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, M., Buse, E., Lu, D. et al. Irreversible nanogel formation in surfactant solutions by microporous flow. Nature Mater 9, 436–441 (2010). https://doi.org/10.1038/nmat2724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing