Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic layers of hybridized boron nitride and graphene domains

Abstract

Two-dimensional materials, such as graphene and monolayer hexagonal BN (h-BN), are attractive for demonstrating fundamental physics in materials and potential applications in next-generation electronics. Atomic sheets containing hybridized bonds involving elements B, N and C over wide compositional ranges could result in new materials with properties complementary to those of graphene and h-BN, enabling a rich variety of electronic structures, properties and applications. Here we report the synthesis and characterization of large-area atomic layers of h-BNC material, consisting of hybridized, randomly distributed domains of h-BN and C phases with compositions ranging from pure BN to pure graphene. Our studies reveal that their structural features and bandgap are distinct from those of graphene, doped graphene and h-BN. This new form of hybrid h-BNC material enables the development of bandgap-engineered applications in electronics and optics and properties that are distinct from those of graphene and h-BN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of an h-BNC film.
Figure 2: Atomic HRTEM images of h-BNC film.
Figure 3: Evidence for hybridized h-BN and graphene domain-like structure of h-BNC.
Figure 4: Electrical properties of h-BNC atomic films.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  2. Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

    Article  CAS  Google Scholar 

  3. Martins, T. B., Miwa, R. H., da Silva, A. J. R. & Fazzio, A. Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98, 196803 (2007).

    Article  CAS  Google Scholar 

  4. Lherbie, A., Blasé, R. X., Niquet, Y., Triozon, F. & Roche, S. Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101, 036808 (2008).

    Article  Google Scholar 

  5. Cherrey, K. et al. Synthesis of BxCyNz nanotubules. Phys. Rev. B 51, 11229–11232 (1995).

    Article  Google Scholar 

  6. Golberg, D., Dorozhkin, P., Bando, Y. & Dong, Z. C. Synthesis, analysis and electrical property measurements of compounds nanotubes in the ceramic B–C–N system. MRS Bull. 29, 38–42 (2004).

    Article  CAS  Google Scholar 

  7. Kaner, R. B., Kouvetakis, J., Warble, C. E., Sattler, M. L. & Bartlett, N. Boron–carbon–nitrogen materials of graphite-like structure. Mater. Res. Bull. 22, 399–404 (1987).

    Article  CAS  Google Scholar 

  8. Liu, A. Y., Wentzcovitch, R. M. & Cohen, M. L. Atomic arrangement and electronic structure of BC2N. Phys. Rev. B 39, 1760–1765 (1989).

    Article  CAS  Google Scholar 

  9. Miyamoto, Y., Rubio, A., Cohen, M. L. & Louie, S. G. Chiral tubules of hexagonal BC2N. Phys. Rev. B 50, 4976–4979 (1994).

    Article  CAS  Google Scholar 

  10. Hernández, E., Goze, C., Bernier, P. & Rubio, A. Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502–4505 (1998).

    Article  Google Scholar 

  11. Kawaguchi, M., Kawashima, T. & Nakajima, T. Syntheses and structures of new graphite-like materials of composition BCN(h) and BC2N(H). Chem. Mater. 8, 1197–1201 (1996).

    Article  CAS  Google Scholar 

  12. Suenaga, K. et al. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997).

    Article  CAS  Google Scholar 

  13. Han, W. Q., Mickelson, W., Cumings, J. & Zettl, A. Transformation of BxCyNz nanotubes to pure BN nanotubes. Appl. Phys. Lett. 81, 1110–1112 (2002).

    Article  CAS  Google Scholar 

  14. Kawasaki, T. et al. Double atomic layers of graphene/monolayer h-BN on Ni(111) studied by scanning tunnelling microscopy and scanning tunnelling spectroscopy. Surf. Rev. Lett. 9, 1459–1464 (2002).

    Article  CAS  Google Scholar 

  15. Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J. & van den Brink, J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007).

    Article  Google Scholar 

  16. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-band gap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004).

    Article  CAS  Google Scholar 

  17. Kubota, Y., Watanabe, K., Tsuda, O. & Taniguchi, T. Deep ultraviolet light–emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317, 932–934 (2007).

    Article  CAS  Google Scholar 

  18. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapour deposition. Nano Lett. 9, 30–35 (2009).

    Article  CAS  Google Scholar 

  19. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  20. Preobrajenski, A. B., Vinogradov, A. S. & Mårtensson, N. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111). Surf. Sci. 582, 21–30 (2005).

    Article  CAS  Google Scholar 

  21. Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of graphene growth on Cu and Ni studied by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).

    Article  CAS  Google Scholar 

  22. Stephan, O. et al. Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994).

    Article  CAS  Google Scholar 

  23. Kouvetakis, J. et al. Novel aspects of graphite intercalation by fluorine and fluorides and new B/C, C/N and B/C/N materials based on the graphite network. Synth. Met. 34, 1–7 (1989).

    Article  CAS  Google Scholar 

  24. Warne, J. H., Rümmeli, M. H., Gemming, T., Büchner, B. & Briggs, G. A. D. Direct imaging of rotational stacking faults in few layer graphene. Nano Lett. 9, 102–106 (2009).

    Article  Google Scholar 

  25. Watanabe, M. O., Itoh, S., Mizushima, K. & Sasaki, T. Bonding characterization of BC2N thin films. Appl. Phys. Lett. 68, 2962–2964 (1996).

    Article  CAS  Google Scholar 

  26. Pimenta, M. A. et al. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007).

    Article  CAS  Google Scholar 

  27. Tauc, J., Grigorovici, R. & Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966).

    Article  CAS  Google Scholar 

  28. Ihm, J. Effects of the layer thickness on the electronic character in GaAs–AlAs superlattices. Appl. Phys. Lett. 50, 1068–1070 (1987).

    Article  CAS  Google Scholar 

  29. Watanabe, M. O., Itoh, S., Mizushima, K. & Sasaki, T. Electrical properties of BC2N thin films prepared by chemical vapour deposition. J. Appl. Phys. 78, 2880–2882 (1995).

    Article  CAS  Google Scholar 

  30. Watanabe, M. O., Itoh, S., Sasaki, T. & Mizushima, K. Visible-light-emitting layered BC2N semiconductor. Phys. Rev. Lett. 77, 187–189 (1996).

    Article  CAS  Google Scholar 

  31. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  32. Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  33. Liu, W., Wang, Z. F., Shi, Q. W., Yang, J. & Liu, F. Band gap scaling of graphene nanohole superlattices. Phys. Rev. B 80, 233405 (2009).

    Article  Google Scholar 

  34. Yuge, K. Phase stability of boron carbon nitride in a heterographene structure. Phys. Rev. B 79, 144109 (2009).

    Article  Google Scholar 

  35. Carroll, D. L. Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett. 81, 2332–2335 (1998).

    Article  CAS  Google Scholar 

  36. Zhang, Y. et al. Localization and the Kosterlitz–Thouless transition in disordered graphene. Phys. Rev. Lett. 102, 106401 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

P.M.A. acknowledges support from Rice University start-up funds and funding support from the Office of Naval Research (ONR) through the MURI programme on graphene and the Basic Energy Sciences division of the Department of Energy (DOE). L.C. (for work carried out on graphene growth and structural characterization) was supported by the ONR MURI programme (award No N00014-09-1-1066) and L.S. (for work done in device fabrication and electrical characterization) by DOE-BES programme DE-SC0001479. C.J. acknowledges the International Balzan Foundation for financial support through Meijo University. F.L. acknowledges support from DOE-BES programme DE-FG0203ER46027. Y.L. acknowledges a scholarship from the Chinese State Scholarship fund. A.S. acknowledges support from the BOYSCAST scheme sponsored by the Department of Science and Technology (DST), India. K.S. acknowledges support from the National Science Foundation Major Research Instrumentation programme (NSF-MRI) DMR-0619801 (for the dilution refrigerator) and the Department of Energy National Nuclear Security Administration (DOE-NNSA) DE-FG52-05NA27036 (17 T magnet and 3He system) and the PVAMU Title III Program US Department of Education (infrastructure). L.B. acknowledges support from DOE-BES and NHMFL-UCGP programmes.

Author information

Authors and Affiliations

Authors

Contributions

L.C. and L.S. contributed equally to this work. L.C. and L.S. designed and carried out most of the experiments (CVD, TEM, AFM, XPS, Raman, ultraviolet–visible spectra, electrical test), and analysed the data. C.J. carried out atomically resolved HRTEM work. D.J. and A.S. conducted part of the CVD growth. Y.L. conducted part of the XPS measurement. K.S., L.B. and L.S. conducted electrical measurements and data analysis. D.W., Z.F.W. and F.L. carried out the modelling. P.M.A was responsible for the project planning. L.C., L.S., P.M.A. and F.L. co-wrote the paper. All the authors discussed the results.

Corresponding author

Correspondence to Pulickel M. Ajayan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1558 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ci, L., Song, L., Jin, C. et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Mater 9, 430–435 (2010). https://doi.org/10.1038/nmat2711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing