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Local inhomogeneities known as polar nanoregions (PNR) play a key role in 

governing the dielectric properties of relaxor ferroelectrics – a special class of 

material that exhibits an enormous electromechanical response and is easily 

polarized with an external field.  Using neutron inelastic scattering methods, we 

show that the PNR can also significantly affect the structural properties of the 

relaxor ferroelectric Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 (PZN-4.5%PT). A strong 

interaction is found between the PNR and the propagation of sound waves, i.e. 

acoustic phonons, the visibility of which can be enhanced with an external electric 

field.  A comparison between acoustic phonons propagating along different 

directions reveals a large asymmetry in the lattice dynamics that is induced by the 

PNR.  We suggest that a phase instability induced by this PNR-phonon interaction 

may contribute to the ultrahigh piezoelectric response of this and related relaxor 
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ferroelectric materials. Our results also naturally explain the emergence of the 

various observed monoclinic phases in these systems. 

Understanding the effects of local inhomogeneities on the properties of materials has 

always presented a great challenge to condensed matter physicists and materials scientists. 

The effort to elucidate the role played by local, polar clusters known as polar nanoregions 

(PNR) that are observed in relaxor ferroelectrics is a prime example of such a challenge. 

Relaxor ferroelectrics (henceforth "relaxors") belong to a special class of disordered 

materials that, because of their extraordinary piezoelectric and dielectric properties1,2,3, 

show enormous potential for industrial applications such as next generation sensors, 

actuators, and transducers that convert between mechanical and electrical forms of energy.  

The inhomogeneities in these materials arise from chemical and valence mixing, and the 

resulting local polar structures can significantly affect macroscopic properties. For 

example, one of the defining features of relaxors – the broad and highly frequency 

dependent dielectric permittivity peak – is directly associated with the relaxation process 

of the PNR4, which appear a few hundred degrees above the Curie temperature TC
5. With 

cooling the PNR are believed to become larger in volume and/or more ordered in polarity. 

There have been extensive studies of the interplay between the PNR and long-range polar 

order in relaxor systems6,7,8. On the other hand, the relationship between the PNR and the 

electromechanical and other structural properties of relaxor systems remains unclear. 

The structures of the PNR have been well characterized in many lead based, 

perovskite relaxor systems9,10,11,12,13,14 and in particular in the prototypical relaxors 

Pb(Zn1/3Nb2/3)O3 (PZN), Pb(Mg1/3Nb2/3)O3 (PMN), and their solid solutions with the 

conventional ferroelectric PbTiO3 (PT). The local structure of PNR is usually different 
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from the average lattice structure of the compound in which they reside. For example, 

whereas the PNR in PMN-xPT and PZN-xPT (for small x) exhibit orthorhombic <110> 

polarizations14, the average macroscopic structure of these compounds is actually 

rhombohedral (R). In this article, we establish a link between these different structures by 

studying the influence of the PNR on the lattice dynamics in a relaxor system. In general, 

atoms in solids can move about their equilibrium positions and, through their motion, 

propagate energy in the form of sound waves, or acoustic phonons. We find that the 

dynamics of relaxors is significantly influenced by these local inhomogeneities. 

Specifically, we have discovered a strong coupling between the PNR and transverse 

acoustic (TA) phonons polarized along <110>.  The PNR can scatter TA phonons 

having a parallel polarization; such phonons thus propagate more slowly and have shorter 

lifetimes. In other words, although the lattice of the bulk still remains virtually cubic 

(having only a slight rhombohedral distortion), the material itself can appear “softer” 

along a particular <110> direction due to the effects of the PNR.  Our work therefore 

provides a scenario wherein the interaction of the PNR and the bulk lattice introduces an 

underlying structural instability, which could provide the microscopic origin of the large 

piezoelectric properties of relaxor systems. 

The system we have studied is Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 (PZN-4.5%PT), which 

lies on the left (rhombohedral) side of the morphotropic phase boundary (MPB) in the 

region of the PZN-xPT phase diagram where the ultra-high piezoelectric response is 

observed; indeed, the piezoelectric coefficient d33 of this crystal is one of the highest 

known. While a monoclinic phase can be induced in PZN-4.5%PT by applying an 

electric field along the [001] direction15, under zero field it still exhibits a cubic (C) 
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high-temperature phase and a rhombohedral (R) low-temperature phase, with a Curie 

temperature TC ~ 475 K. Neutron inelastic scattering measurements were performed in 

the neighborhood of the (220) and )202(  Bragg peaks (expressed using pseudocubic 

notation) using the constant-Q method, i.e. by scanning the neutron energy transfer ћω 

while sitting at a fixed wavevector transfer Q located a distance q in reciprocal space 

from a given Bragg peak G (Q = G + q). It is important to note that both the PNR and 

phonon neutron scattering cross sections involve the atomic displacements, whether static 

or dynamic; therefore both cross sections are subject to the factor 2ε•Q , where ε is the 

unit vector along the polarization (atomic displacement) direction. Consequently, near the 

(220) ( )202( ) Bragg peak neutron scattering probes only those PNR with [110] ( ]101[ ) 

polarizations as well as [110] ( ]101[ ) polarized phonons propagating along q.  This 

situation is shown schematically in Fig. 1A, where q is chosen transverse to the Bragg 

peak G such that we measure TA phonons propagating along [110] and ]011[  near 

)202(  and (220), respectively. 

When PZN-4.5%PT is zero-field cooled (ZFC), the diffuse scattering from PNR 

forms ellipsoids13, 14 of equivalent shape and intensity centered on the (220) and )202(  

Bragg peaks. In order to identify the interaction between the PNR and phonons explicitly, 

an ability to tune the diffuse scattering intensities independently and watch for changes in 

the phonon spectra is required. Fortunately, this can be achieved by cooling the single 

crystal sample under a moderate external electric field E = 2 kV/cm applied along [111]. 

When this is done, PNR with different polarizations are reoriented, which leads to a 

redistribution of the diffuse scattering in reciprocal space16 as shown in Fig. 1A. A linear 
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scan of the scattering intensity measured along [H, 2.1, 0] after field cooling to 200 K 

(Fig. 1B) includes contributions from PNR having both [110] and ]101[  polarizations 

and illustrates this redistribution. In other words, diffuse scattering intensities from PNR 

having [110] polarizations (shown in blue in Fig. 1 A and B) weaken while those from 

PNR having ]101[  polarizations (shown in red in Fig. 1 A and B) strengthen when the 

system is field-cooled (FC) under a field applied along [111].  Remarkably, we find that 

the TA phonons polarized along [110] and ]101[  are significantly modified at the same 

time. Figs. 1 C and D show contour maps of the phonon intensities measured near the 

(220) and )202(  Bragg peaks after field cooling to T=200 K. Near (220), the 

lower-energy acoustic mode (i.e. the TA2 mode polarized along [110]) is sharp and 

well-defined in energy, whereas the identical TA2 mode (but polarized along ]101[ ) 

near )202(  is comparatively very soft and broad.  By contrast, the transverse optic 

(TO2) modes are essentially unaffected by the diffuse scattering as they do not differ 

noticeably between the two Bragg peaks.  

Constant-Q scans are shown in Fig. 2 to provide a comparison between FC and ZFC 

results at different temperatures. After cooling below TC, a difference becomes noticeable 

between the ZFC (black solid lines) and FC spectra measured near (220) (blue lines) and 

)202(  (red lines).  At 400 K, the data in Fig. 2 B and E show that where the diffuse 

scattering is strong (near )202( ), the corresponding TA2 phonon is soft and broad in 

energy; conversely, where the diffuse scattering is weak (near (220)), the TA2 mode is 

hard and well-defined. These results unambiguously demonstrate the presence of a strong 

coupling between the diffuse scattering (PNR) and the TA2 phonons in PZN-4%PT, 
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evidence of which has also observed in the relaxor PMN17.  If the PNR grow upon 

cooling, then this effect should become more pronounced at lower temperatures; the data 

in Figs. 2 C and F, measured at 200 K, clearly show this to be the case.  

It is important to note that if we average the two FC phonon spectra measured below 

TC near (220) and )202(  (represented by the black lines in Fig. 2), the result agrees 

almost exactly with the ZFC spectra. Since our ZFC measurements were all performed by 

heating the sample well above TC and then cooling in zero field, any residue electric field 

effect or field-induced piezoelectric strain should have been completely removed. This 

shows that cooling under this moderate field merely rearranges the multiple 

<111>-polarized ferroelectric domains such that the system adopts a single domain state 

with polarization along the [111] field direction; any other effect of the field on the 

phonons or PNR is negligible. In other words, the electric field does not soften or 

broaden the TA phonon modes, and the PNR-phonon coupling effect is intrinsic.  If this 

were not true, then the average of the FC spectra would not match the ZFC spectra.  In 

the ZFC state the effects of the PNR on the phonon modes are still present (for T < TC); 

however because the ZFC data represent an average over different domains, the 

measurements made near (220) and )202(  cannot be distinguished.  

The half widths at half maximum (HWHM) in energy of the TA2 phonons measured 

at 200 K are shown in Fig. 3 C. The broad widths of the ]101[  polarized TA2 phonons 

indicate a short-lived mode. While cooling in a field oriented along [111] stabilizes a 

single domain R phase, many PNR having ]101[  polarizations are present16; these PNR 

appear to interact strongly with ]101[  polarized TA2 phonons, thereby reducing the 

phonon lifetime. However, because there are far fewer PNR having [110] polarizations, 
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the [110] polarized TA2 phonons are relatively unaffected (see Fig. 3 A and C).  

The data in Fig. 3 A show that the TO2 mode is overdamped at small q at 600 K, in 

agreement with previous measurements on similar systems18,19 ,20; this q-dependent 

damping produces the dynamical feature known as the “waterfall”. Upon cooling to 200 

K, the optic modes harden and sharpen in energy (see Fig. 3 A and B), and are unaffected 

by the diffuse scattering changes below TC as can be seen by comparing the TO2 modes 

near the two Bragg peaks.  This behaviour differs from the strong TA-TO coupling 

effects previously observed in similar systems at temperatures above TC
20,21. For T < TC 

the lack of any significant change in the TO modes compared to the large change in TA 

mode energies (between the two Bragg peaks) proves that any coupling between the TA 

and TO modes with <110> polarizations is extremely weak. 

Phonons describe collective modes of atomic motions; acoustic phonons are directly 

associated with strains in the crystal lattice. A very soft and overdamped acoustic phonon 

mode is usually indicative of a phase instability and a tendency toward a structural 

transition. After the phase transition takes place and the system becomes stable, the 

phonon mode recovers and becomes well-defined again. For instance, the softening of 

acoustic modes is common in other ferroelectric systems where the TA-TO coupling is 

strong, and the soft TA mode recovers after the structural phase transition takes place22. 

However, in PZN-4.5%PT the structure remains rhombohedral for T < TC. While no 

phase transition associated with this ]101[ -TA2 phonon anomaly ever occurs, the 

phonon mode remains anomalously soft and broad, and the system remains (structurally) 

unstable at low temperature. In other words, the anomaly in this ]101[ -TA2 mode is 

indicative of a phase instability in the low temperature R-phase of PZN-4.5%PT. 
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Despite the large orthorhombic-type asymmetry between the TA2 phonon modes 

polarized along [110] and ]101[ , the static strain, or the deviation from a cubic structure, 

along these two orthorhombic directions in PZN-4.5%PT is rather small. The average 

structure of PZN-4.5%PT at low temperature is rhombohedral with a relatively small 

distortion with or without a moderate electric field applied along [111]. In our case, the 

static strain %2.0/ ≤Δ dd  along the [110] direction (determined from the size of the 

splitting between Bragg peaks - see also ref. 23); this is clearly not consistent with the 

large (>70%) difference in phonon energies between the two TA2 modes polarized along 

[110] and ]101[ , especially when compared with values observed in other 

relaxor/ferroelectric systems having similar structures. For example, in PMN-60%PT24 at 

400 K in the tetragonal phase, one has a much larger strain %7.1~/ ddΔ  along <001> 

while the splitting of the TA1 mode is less than 30% (estimated from the ZFC TA1 

phonon broadening). Another example is the classic ferroelectric PbTiO3, for which the 

tetragonal strain is about 6% at 200 K, whereas the TA1 phonons along the a and c 

directions only differ by ~20% in energy25.  Note that these two systems have relatively 

large static strains, are both ferroelectric, and show no evidence of PNR. Intriguingly, 

similar to what we observe in PZN-4.5%PT, phonon studies on another relaxor system 

where PNR are present, K0.965Li0.035TaO3 (KLT x=0.035)26, report a large splitting 

(Δω~25% at T=4.8 K) of the TA1 phonon modes polarized along the a and c directions 

as well, while the static tetragonal strain in that system is small (~0.2%). These examples 

suggest that in ferroelectric perovskites, the situation where a small static strain is 

accompanied by a large asymmetry in the lattice dynamics is unique to relaxors where 

PNR are present. Once the external field and small static lattice strain have been excluded 
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as origins of the anomalous asymmetry between TA modes measured at )202( and (220), 

an interaction between the TA modes and the PNR becomes the only viable explanation. 

For materials to be considered “good” piezoelectrics it is not enough to exhibit a 

large static strain (e.g. PbTiO3 is not considered a good piezoelectric despite its large 

tetragonal strain); instead a material must have a large derivative of strain with respect to 

external electric field, i.e. the lattice/strain must be able to change significantly under 

field. Various previous theoretical, computational, and experimental work27,28,29,30,31 has 

suggested a link between the phase instability in these compounds and the enhanced 

piezoelectric responses. In fact, acoustic phonons are directly related to the elastic 

constants in solids, and a soft TA mode is consistent with a system that is easier to distort 

(along a certain direction). Our results provide strong evidence that in relaxors such a 

phase instability does exist and is indeed induced by the PNR and manifested as an 

asymmetry in the lattice dynamics. Note that this instability is intrinsic and not dependent 

on the external field (along [111]); the [111] field only rearranges large ferroelectric 

domains for the effect to be observed macroscopically as discussed previously. In the 

case of an external field oriented along [011] or [001], where the field direction does not 

align with the natural rhombohedral ([111]) domain polarization, the intrinsic instability 

apparently helps to facilitate the field-induced structural change and contributes to the 

large piezoelectric response32. Nevertheless, how or if the PNR react to the field is not yet 

entirely clear; only very limited studies exist so far, e.g. Ref. 33, and further study is 

required. 

While we have explicitly shown the existence of a strong PNR-phonon interaction in 

PZN-4.5%PT, this effect is not limited to one composition. It has been shown by neutron 
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and x-ray diffuse scattering measurements that PNR are present in all compositions to the 

left of the MPB in both PMN-xPT and PZN-xPT solid solutions14,34 as well as for 

compositions inside the MPB (see Fig. S1). There is also evidence for a PNR-phonon 

interaction in other PT compositions such as PMN-20%PT35 and pure PMN17 where an 

anomalous TA phonon broadening has been observed and attributed to diffuse-phonon 

coupling. While PT doping toward the MPB or an external electric field31 does enhance 

the electromechanical and piezoelectric properties in both PMN-xPT and PZN-xPT, the 

relaxor character itself plays an important and fundamental role. In fact, even in the 

absence of any PT, both pure PZN and PMN already exhibit extraordinarily high field 

induced piezoelectric strains36. With increasing PT content some relaxor properties, such 

as the frequency dispersion in dielectric permittivity, are gradually suppressed; yet the 

elastic diffuse scattering from PNR is still present near the MPB. In fact, diffuse 

scattering measurements from PMN-xPT single crystals34 have suggested that the 

Q-integrated diffuse scattering intensity increases with increasing PT and reaches a 

maximum near the MPB – precisely where the piezoelectric response is optimal, which is 

likely more than just coincidence. When these relaxor-ferroelectric solid solutions cross 

the MPB into the tetragonal side of the phase diagram with even larger PT content, PNR 

are no longer present24,34 and the piezoelectric property drops dramatically1 (to values 

below even those of pure PMN and PZN). 

The orthorhombic asymmetry in the lattice dynamics induced by the PNR also has 

clear implications on the emergence of various monoclinic (M) phases in relaxor 

ferroelectric solid-solutions. Monoclinic phases37,38,39,40  have been found in PMN-xPT 

and PZN-xPT for compositions near the MPB and can be induced in lower PT 
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compositions with a external field applied along [001]41,42. These are believed to appear 

as a result of the “polarization rotation” scheme proposed by Fu and Cohen27. Here, the 

polarization of the system can be rotated by an external field in a monoclinic plane, 

instead of being confined to a certain crystallographic orientation as in the R or T phases 

(see Fig. 4 for details).  While PT doping tends to drive the system toward a tetragonal 

(T) phase due to the large tetragonal strain of PbTiO3 itself, the low symmetry M phases 

are considered as a bridge between the R and T phases. One dilemma remains however.  

Intuitively, the bridging phase for low-PT R and high-PT T phases should be MA, where 

the polarization lies in the (110) plane (see Fig. 4B); in reality, however, in both 

PZN-xPT and PMN-xPT systems the zero-field phase near the MPB is MC, not MA (in 

fact it is orthorhombic (O) in PZN-xPT, which is a special case of MC), where the 

polarization can rotate in the (001) plane (Fig. 4C). An MC phase is also often observed 

when an electric field is applied along [001]. Using our results on the orthorhombic-type 

strain induced by PNR, manifested by an asymmetry in the lattice dynamics, this 

situation can now be understood in simple phenomenological terms. The combination of 

a rhombohedral (R) distortion and a tetragonal strain (T), either from PT doping or an 

external [001] field, can only produce an MA phase; however both MA and MC phases are 

possible (see Fig. 4 B, C) by combining T distortion with an orthorhombic (O) strain 

instead. 

In summary, we have shown that PNR significantly affect the lattice stability in 

relaxor systems through a fundamental interaction with transverse acoustic phonons. 

While the average, static structure of the bulk is not explicitly modified by the PNR, the 

local structure of the PNR can be mapped onto the low energy lattice dynamics 
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macroscopically. The resulting relaxor phase has a nearly cubic structure with a large 

asymmetry in the lattice dynamics that also helps to explain intuitively the emergence of 

various M phases in relaxor ferroelectric solid solutions. Our results therefore provide 

evidence that the ultra-high piezoelectric properties of relaxor ferroelectrics may arise 

from a structural instability resulting from a competition between the static bulk structure 

and local inhomogeneities that is mediated by acoustic phonons.  
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Figure 1.  Neutron scattering measurements performed on a PZN-4.5PT single 

crystal with dimensions of 10×10×3 mm3. The experiment was performed on the 

NCNR BT7 triple-axis-spectrometer using beam collimations of 50’-50’-40’-240’.  The 

final neutron energy was fixed at 14.7 meV. A pyrolytic graphite (PG) filter was placed 

after the sample to reduce higher order neutrons.  Lines are guides to the eye.  (A) A 
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schematic diagram of the neutron scattering measurements, performed near the (220) and 

)202( Bragg peaks. The blue and red ellipsoids represent the FC diffuse scattering 

intensity distributions for E along [111]. The polarization and propagation vectors for the 

phonons are also noted. (B) Profile of the diffuse scattering intensity measured along (H 

2.1 0) (dashed line in (A)) under ZFC and FC conditions. (C) Intensity contours measured 

near )202( . (D) Intensity contours measured near (220). 
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Figure 2. Constant-Q scans measured near the (220) and )202(  Bragg peaks at 

q=0.1 and 0.2 r.l.u. The blue and red points are data taken near )202(  and (220) after 

cooling in a field E=2 kV/cm oriented along [111]. The black points are ZFC data. Red 
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and blue lines are guides to the eye. The black lines are calculated as an average of the 

two FC data sets (blue and red data points), and can be compared directly to the ZFC 

data. 
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Figure 3. Phonon dispersions and energy widths (HWHM) measured around the 

(220) and )202(  Bragg peaks under FC and ZFC conditions. The solid lines in (A) 

are guides to the eye. The dashed lines in (B) and (C) denote the instrumental energy 
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resolution. The error bars in the figure are fitting errors obtained though least-square fits 

to the data, assuming the phonon modes having Lorentzian line shapes. 

 

 

Figure 4. Schematic diagrams of the different polarization directions (marked by 

arrows) in the relaxor perovskite structure. (A) Polarizations along T and R. (B) The 

MA phase, for which the polarization lies in the (110) plane, can be obtained by 

combining T and O. (C) The MC phase, for which the polarization lies in the (100) plane, 
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can also be obtained by combining T and O. 
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