Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epitaxial graphene on ruthenium

Abstract

Graphene has been used to explore the fascinating electronic properties of ideal two-dimensional carbon, and shows great promise for quantum device architectures. The primary method for isolating graphene, micromechanical cleavage of graphite, is difficult to scale up for applications. Epitaxial growth is an attractive alternative, but achieving large graphene domains with uniform thickness remains a challenge, and substrate bonding may strongly affect the electronic properties of epitaxial graphene layers. Here, we show that epitaxy on Ru(0001) produces arrays of macroscopic single-crystalline graphene domains in a controlled, layer-by-layer fashion. Whereas the first graphene layer indeed interacts strongly with the metal substrate, the second layer is almost completely detached, shows weak electronic coupling to the metal, and hence retains the inherent electronic structure of graphene. Our findings demonstrate a route towards rational graphene synthesis on transition-metal templates for applications in electronics, sensing or catalysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of epitaxial graphene on Ru(0001).
Figure 2: In situ microscopy of graphene epitaxy on Ru(0001).
Figure 3: Identification of the layer spacing of one- and two-layer graphene/Ru(0001).
Figure 4: Micro-Raman characterization of two-layer graphene on Ru(0001).
Figure 5: Measurement of interlayer electrical transport.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  3. Bostwick, A. et al. Quasiparticle dynamics in graphene. Nature Phys. 3, 36–40 (2007).

    Article  CAS  Google Scholar 

  4. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  5. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  6. Chen, Z., Lin, Y.-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  7. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).

    Article  CAS  Google Scholar 

  8. de Heer, W. A. et al. Epitaxial graphene. Solid State Commun. 143, 92–100 (2007).

    Article  CAS  Google Scholar 

  9. N’Diaye, A. T., Bleikamp, S., Feibelman, P. J. & Michely, T. Two-dimensional Ir cluster lattice on a graphene moire on Ir(111). Phys. Rev. Lett. 97, 215501 (2006).

    Article  Google Scholar 

  10. Coraux, J., N’Diaye, A. T., Busse, C. & Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 8, 565–570 (2008).

    Article  CAS  Google Scholar 

  11. Marchini, S., Gunther, S. & Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007).

    Article  Google Scholar 

  12. Vazquez de Parga, A. L. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 100, 056807 (2008).

    Article  CAS  Google Scholar 

  13. Pan, Y., Shi, D.-X. & Gao, H.-J. Formation of graphene on Ru(0001) surface. Chinese Phys. 3151 (2007).

  14. Pan, Y. et al. Millimeter-scale, highly ordered single crystalline graphene grown on Ru (0001) surface. Preprint at <http://arxiv.org/abs/0709.2858> (2007).

  15. Arnoult, W. J. & McLellan, R. B. The solubility of carbon in rhodium, ruthenium, iridium, and rhenium. Scr. Metall. 6, 1013–1018 (1972).

    Article  CAS  Google Scholar 

  16. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).

    Article  CAS  Google Scholar 

  17. Hass, J. et al. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006).

    Article  Google Scholar 

  18. Land, T. A. et al. STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264, 261–270 (1992).

    Article  CAS  Google Scholar 

  19. Schmid, A. K. et al. The chemistry of reaction-diffusion fronts investigated by microscopic LEED I–V fingerprinting. Surf. Sci. Part 1 331–333, 225–230 (1995).

    Article  Google Scholar 

  20. Blum, V. & Heinz, K. Fast LEED intensity calculations for surface crystallography using tensor LEED. Comput. Phys. Commun. 134, 392–425 (2001).

    Article  CAS  Google Scholar 

  21. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–187404 (2006).

    Article  CAS  Google Scholar 

  22. Olijnyk, H., Jephcoat, A. P. & Refson, K. On optical phonons and elasticity in the hcp transition metals Fe, Ru and Re at high pressure. Europhys. Lett. 53, 504–510 (2001).

    Article  CAS  Google Scholar 

  23. Yan, J., Zhang, Y., Kim, P. & Pinczuk, A. Electric field effect tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 98, 166802–166804 (2007).

    Article  Google Scholar 

  24. Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

    Article  CAS  Google Scholar 

  25. Das, A. et al. Electrochemically top gated graphene: Monitoring dopants by Raman scattering. Preprint at <http://arxiv.org/abs/0709.1174> (2007).

  26. Matsubara, K., Sugihara, K. & Tsuzuku, T. Electrical resistance in the c direction of graphite. Phys. Rev. B 41, 969 (1990).

    Article  CAS  Google Scholar 

  27. Bachtold, A. et al. Aharonov–Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999).

    Article  CAS  Google Scholar 

  28. Bourlon, B. et al. Determination of the intershell conductance in multiwalled carbon nanotubes. Phys. Rev. Lett. 93, 176806 (2004).

    Article  CAS  Google Scholar 

  29. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  30. Beebe, J. M. et al. Transition from direct tunneling to field emission in metal–molecule–metal junctions. Phys. Rev. Lett. 97, 026801–026804 (2006).

    Article  Google Scholar 

  31. Drickamer, H. G. Pi electron systems at high pressure. Science 156, 1712 (1967).

    Article  CAS  Google Scholar 

  32. Varchon, F. et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 99, 126805 (2007).

    Article  CAS  Google Scholar 

  33. Mattausch, A. & Pankratov, O. Ab initio study of graphene on SiC. Phys. Rev. Lett. 99, 076802–076804 (2007).

    Article  Google Scholar 

  34. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    Article  CAS  Google Scholar 

  35. Maleville, C. & Mazure, C. Smart-cut technology: From 300 mm ultrathin SOI production to advanced engineered substrates. Solid State Electron. 48, 1055–1063 (2004).

    Article  CAS  Google Scholar 

  36. Sutter, P. W. & Sutter, E. A. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. Nature Mater. 6, 363–366 (2007).

    Article  CAS  Google Scholar 

  37. Sutter, E. et al. Assembly of ordered carbon shells on GaN nanowires. Appl. Phys. Lett. 90, 093118 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Valla and J. Camacho for access to a cleaved monolayer graphene sample. Work carried out under the auspices of the US Department of Energy under contract No. DE-AC02-98CH1-886.

Author information

Authors and Affiliations

Authors

Contributions

P.W.S. and E.A.S. planned the study, carried out all experiments, and analysed the data. J.-I.F. carried out the LEED I(V) simulations. P.W.S. wrote the paper, and all authors commented on the manuscript.

Corresponding author

Correspondence to Peter W. Sutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutter, P., Flege, JI. & Sutter, E. Epitaxial graphene on ruthenium. Nature Mater 7, 406–411 (2008). https://doi.org/10.1038/nmat2166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing