Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity

Abstract

Suppression of dendritic cell function in cancer patients is thought to contribute to the inhibition of immune responses and disease progression. Molecular mechanisms of this suppression remain elusive, however. Here, we show that a fraction of blood monocyte-derived myeloid dendritic cells (MDCs) express B7-H1, a member of the B7 family, on the cell surface. B7-H1 could be further upregulated by tumor environmental factors. Consistent with this finding, virtually all MDCs isolated from the tissues or draining lymph nodes of ovarian carcinomas express B7-H1. Blockade of B7-H1 enhanced MDC-mediated T-cell activation and was accompanied by downregulation of T-cell interleukin (IL)-10 and upregulation of IL-2 and interferon (IFN)-γ. T cells conditioned with the B7-H1–blocked MDCs had a more potent ability to inhibit autologous human ovarian carcinoma growth in non-obese diabetic–severe combined immunodeficient (NOD-SCID) mice. Therefore, upregulation of B7-H1 on MDCs in the tumor microenvironment downregulates T-cell immunity. Blockade of B7-H1 represents one approach for cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and regulation of tumor MDC–associated B7-H1.
Figure 2: Function of MDC-associated B7-H1.
Figure 3: Downregulation of MDC IL-12 and upregulation of MDC IL-10 by B7-H1-stimulated T cells.
Figure 4: Tumor MDC–associated B7-H1 inhibits tumor immunity.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Zitvogel, L. et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med. 183, 87–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Zitvogel, L. et al. IL-12-engineered dendritic cells serve as effective tumor vaccine adjuvants in vivo. Ann. NY Acad. Sci. 795, 284–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Mayordomo, J.I. et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med. 1, 1297–1302 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Nestle, F.O., Banchereau, J. & Hart, D. Dendritic cells: on the move from bench to bedside. Nat. Med. 7, 761–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2, 52–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Pardoll, D. T cells and tumors. Nature 411, 1010–1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Zou, W. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med. 7, 1339–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Gabrilovich, D.I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Tamura, H. et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 97, 1809–1816 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Mazanet, M.M. & Hughes, C.C. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J. Immunol. 169, 3581–3588 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J. & Enk, A.H. Induction of tolerance by IL-10-treated dendritic cells. J. Immunol. 159, 4772–4780 (1997).

    CAS  PubMed  Google Scholar 

  19. Loercher, A.E., Nash, M.A., Kavanagh, J.J., Platsoucas, C.D. & Freedman, R.S. Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J. Immunol. 163, 6251–6260 (1999).

    CAS  PubMed  Google Scholar 

  20. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92, 4778–4791 (1998).

    CAS  PubMed  Google Scholar 

  22. Bennett, S.R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Schoenberger, S.P., Toes, R.E., van der Voort, E.I., Offringa, R. & Melief, C.J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Chang, C.C. et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3, 237–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Trinchieri, G. & Scott, P. Interleukin-12: basic principles and clinical applications. Curr. Top. Microbiol. Immunol. 238, 57–78 (1999).

    CAS  PubMed  Google Scholar 

  27. Dong, H. et al. Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J. Clin. Invest. 111:363–370, 2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, S.-D. et al. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J. Exp. Med. In press.

  29. Takahashi, A. et al. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res. 54, 4233–4237 (1994).

    CAS  PubMed  Google Scholar 

  30. Takahashi, Y., Kitadai, Y., Bucana, C.D., Cleary, K.R. & Ellis, L.M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 55, 3964–3968 (1995).

    CAS  PubMed  Google Scholar 

  31. Brown, L.F. et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am. J. Pathol. 143, 1255–1262 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Toi, M. et al. Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77, 1101–1106 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Zou, W. et al. Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by β-chemokines rather than IL-12. J. Immunol. 165, 4388–4396 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Zou, W. et al. Quantification of cytokine gene expression by competitive PCR using a colorimetric assay. Eur. Cytokine Netw. 6, 257–264 (1995).

    CAS  PubMed  Google Scholar 

  35. Strome, S.E. et al. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res. 62, 1884–1889 (2002).

    CAS  PubMed  Google Scholar 

  36. Llorente, L. et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J. Exp. Med. 181, 839–844 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Mesiano, S., Ferrara, N. & Jaffe, R.B. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Pathol. 153, 1249–1256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Concern Foundation, U.S. Army OC020173 (W.Z.), the Tulane endowment (W.Z. and T.C.), RR00164 (X.A.) and National Institutes of Health grants CA092562 (W.Z.), HL67962, CA89019, CA8661 and CA86881 (D.C.), and CA97085 (L.C.). We thank D. Flies and D. Olivares for technical assistance and R. Weiner, J. Puschett, R. Veazey and A. Lackner for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tyler J. Curiel or Weiping Zou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curiel, T., Wei, S., Dong, H. et al. Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nat Med 9, 562–567 (2003). https://doi.org/10.1038/nm863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing