Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular pathways to neurodegeneration

Abstract

The molecular bases underlying the pathogenesis of neurodegenerative diseases are gradually being disclosed. One problem that investigators face is distinguishing primary from secondary events. Rare, inherited mutations causing familial forms of these disorders have provided important insights into the molecular networks implicated in disease pathogenesis. Increasing evidence indicates that accumulation of aberrant or misfolded proteins, protofibril formation, ubiquitin-proteasome system dysfunction, excitotoxic insult, oxidative and nitrosative stress, mitochondrial injury, synaptic failure, altered metal homeostasis and failure of axonal and dendritic transport represent unifying events in many slowly progressive neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histology and structures related to AD.
Figure 2: Histology and structures related to PD.
Figure 3: DJ-1 and PINK1 proteins in PD.
Figure 4: Aggregation and domain structure of Htt in HD.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Selkoe, D.J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Roses, A.D. Alipoprotein E in neurology. Curr. Opin. Neurol. 4, 265–270 (1996).

    Google Scholar 

  3. Hardy, J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20, 154–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Selkoe, D.J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, A23–A31 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Delacourte, A. & Buee, L. Tau pathology: a marker of neurodegenerative disorders. Curr. Opin. Neurol. 13, 371–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Rossjohn, J. et al. Crystal structure of the N-terminal, growth factor–like domain of Alzheimer amyloid precursor protein. Nat. Struct. Biol. 6, 327–331 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Barnham, K.J. et al. Structure of the Alzheimer's disease amyloid precursor binding protein. A regulator of neuronal copper homeostasis. J. Biol. Chem. 278, 17401–17407 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Watson, A.A., Fairlie, D.P. & Craik, D.J. Solution structure of methionine-oxidized amyloid β-peptide (1–40). Does oxidation affect conformational switching? Biochemistry 37, 12700–12706 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Curtain, C.C. et al. Alzheimer's disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20466–20473 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Singleton, A., Myers, A. & Hardy, J. The law of mass action applied to neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Hum. Mol. Genet. 13 (Spec. no. 1), R123–R126 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Haas, C. & Steiner, H. Alzheimer disease-γ-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol. 12, 556–562 (2002).

    Article  Google Scholar 

  12. Edbauer, D. et al. Reconstitution of γ-secretase activity. Nat. Cell Biol. 5, 486–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Haass, C. Take five-BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation. EMBO J. 23, 483–488 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hutton, M., Perez-Tur, J. & Hardy, J. Genetics of Alzheimer's disease. Essays Biochem. 33, 117–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Borchelt, D.R. et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939–945 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Naruse, S. et al. Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213–1221 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Lu, D.C. et al. A second cytotoxic proteolytic pepide derived from amyloid β-protein precursor. Nat. Med. 6, 385–386 (2000).

    Article  CAS  Google Scholar 

  20. Stewart, W.F., Kawas, C., Corrada, M. & Metter, E.J. Risk of Alzheimer's disease and duration of NSAID use. Neurology 48, 626–632 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Lipton, S.A. Concepts: turning down but not off—neuroprotection requires a paradigm shift in drug development. Nature 428, 473 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kamal, A., Stokin, G.B., Yang, Z., Xia, C.H. & Goldstein, L.S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Kamal, A., Almenar-Queralt, A., LeBlanc, J.F., Roberts, E.A. & Goldstein, L.S. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643–648 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Pigino, G. et al. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J. Neurosci. 23, 4499–4508 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Chapman, P.F. et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Walsh, D.M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Stephan, A., Laroche, S. & Davis, S. Generation of aggregated β-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J. Neurosci. 21, 5703–5714 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bush, A.I. et al. A novel zinc(II) binding site modulates the function of the βA4 amyloid protein precursor of Alzheimer's disease. J. Biol. Chem. 268, 16109–16112 (1993).

    CAS  PubMed  Google Scholar 

  31. Bush, A.I. et al. Rapid induction of Alzheimer A β amyloid formation by zinc. Science 265, 1464–1467 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L. & Markesbery, W.R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Dong, J. et al. Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42, 2768–2773 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Opazo, C. et al. Metalloenzyme-like activity of Alzheimer's disease β-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2 . J. Biol. Chem. 277, 40302–40308 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Bush, A.I. Copper, zinc, and the metallobiology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 17, 147–150 (2003).

    Article  PubMed  Google Scholar 

  36. Huang, X. et al. The A β peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609–7616 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Bossy-Wetzel, E. et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41, 351–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Bush, A.I. Metal complexing agents as therapies for Alzheimer's disease. Neurobiol. Aging 23, 1031–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Cherny, R.A. et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30, 665–676 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Ritchie, C.W. et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol. 60, 1685–1691 (2003).

    Article  PubMed  Google Scholar 

  41. Hirai, K. et al. Mitochondrial abnormalities in Alzheimer's disease. J. Neurosci. 21, 3017–3023 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anandatheerthavarada, H.K., Biswas, G., Robin, M.A. & Avadhani, N.G. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161, 41–54 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Casley, C.S. et al. β-Amyloid fragment 25–35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol. Dis. 10, 258–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Casley, C.S., Canevari, L., Land, J.M., Clark, J.B. & Sharpe, M.A. β-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Lustbader, J.W. et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science 304, 448–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, J. et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med. 8, 600–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Hardy, J., Cookson, M.R. & Singleton, A. Genes and parkinsonism. Lancet Neurol. 2, 221–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Langston, J.W., Ballard, P., Tetrud, J.W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    Article  CAS  PubMed  Google Scholar 

  49. Langston, J.W. et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Rose, S. et al. Age-related effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of common marmosets. Eur. J. Pharmacol. 230, 177–185 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Irwin, I., DeLanney, L.E. & Langston, J.W. MPTP and aging. Studies in the C57BL/6 mouse. Adv. Neurol. 60, 197–206 (1993).

    CAS  PubMed  Google Scholar 

  52. Ovadia, A., Zhang, Z. & Gash, D.M. Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiol. Aging 16, 931–937 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Kaur, D. et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 37, 899–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 1301–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Polymeropoulos, M.H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Valente, E.M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004)

    Article  CAS  PubMed  Google Scholar 

  59. Eriksen, J.L., Dawson, T.M., Dickson, D.W. & Petrucelli, L. Caught in the act. α-Synuclein is the culprit in Parkinson's disease. Neuron 40, 453–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Baptista, M.J., Cookson, M.R. & Miller, D.W. Parkin and α-synuclein: opponent actions in the pathogenesis of Parkinson's disease. Neuroscientist 10, 63–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Sakata, E. et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4, 301–306 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cookson, M.R. Parkin's substrates and the pathways leading to neuronal damage. Neuromolecular Med. 3, 1–13 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Cookson, M.R. et al. RING finger 1 mutations in Parkin produce altered localization of the protein. Hum. Mol. Genet. 12, 2957–2965 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Imai, Y. et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105, 891–902 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Petrucelli, L. et al. Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Staropoli, J.F. et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Darios, F. et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum. Mol. Genet. 12, 517–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, Y., Nishimura, I., Imai, Y., Takahashi, R. & Lu, B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37, 911–924 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Tsai, Y.C., Fishman, P.S., Thakor, N.V. & Oyler, G.A. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J. Biol. Chem. 278, 22044–22055 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Greene, J.C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100, 4078–4083 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Palacino, J.J. et al. Mitochondrial dysfunction and oxidative damage in Parkin-deficient mice. J. Biol. Chem. 279, 18614–18622 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Chung, K.K. et al. S-Nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328–1331 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. Yao, D., et al. Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ligase activity. Proc. Natl. Acad. Sci. USA (2004), in press.

  74. Cookson, M.R. Pathways to parkinsonism. Neuron 37, 7–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Taira, T. et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5, 213–218 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Honbou, K. et al. The crystal structure of DJ-1, a protein related to male fertility and Parkinson's disease. J. Biol. Chem. 278, 31380–31384 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Wilson, M.A., Collins, J.L., Hod, Y., Ringe, D. & Petsko, G.A. The 1.1-Å resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early-onset Parkinson's disease. Proc. Natl. Acad. Sci. USA 100, 9256–9261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Panov, A.V. et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 5, 731–736 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Young, A.B. Huntingtin in health and disease. J. Clin. Invest. 111, 299–302 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harjes, P. & Wanker, E.E. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci. 28, 425–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Li, H., Gu, X., Dawson, V.L. & Dawson, T.M. Identification of calcium- and nitric oxide–regulated genes by differential analysis of library expression (DAzLE). Proc. Natl. Acad. Sci. USA 101, 647–652 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Andrade, M.A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nat. Genet. 11, 115–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Sittler, A. et al. SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol. Cell 2, 427–436 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Sun, Y., Savanenin, A., Reddy, P.H. & Liu, Y.F. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-d-aspartate receptors via post-synaptic density 95. J. Biol. Chem. 276, 24713–24718 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Wanker, E.E. et al. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum. Mol. Genet. 6, 487–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Kalchman, M.A. et al. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat. Genet. 16, 44–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Li, X.J. et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Singaraja, R.R. et al. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum. Mol. Genet. 11, 2815–2828 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Feany, M.B. & La Spada, A.R. Polyglutamines stop traffic: axonal transport as a common target in neurodegenerative diseases. Neuron 40, 1–2 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Li, H., Li, S.H., Yu, Z.X., Shelbourne, P. & Li, X.J. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473–8481 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gunawardena, S. et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Steffan, J.S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Dunah, A.W. et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 296, 2238–2243 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Obrietan, K. & Hoyt, K.R. CRE-mediated transcription is increased in Huntington's disease transgenic mice. J. Neurosci. 24, 791–796 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sugars, K.L., Brown, R., Cook, L.J., Swartz, J. & Rubinsztein, D.C. Decreased cAMP response element–mediated transcription: an early event in exon 1 and full-length cell models of Huntington's disease that contributes to polyglutamine pathogenesis. J. Biol. Chem. 279, 4988–4999 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Sipione, S. & Cattaneo, E. Modeling Huntington's disease in cells, flies, and mice. Mol. Neurobiol. 23, 21–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Rubinsztein, D.C. Lessons from animal models of Huntington's disease. Trends Genet. 18, 202–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Hough, M.A. et al. Dimer destabilization in superoxide dismutase may result in disease-causing properties: structures of motor neuron disease mutants. Proc. Natl. Acad. Sci. USA 101, 5976–5981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koo, E.H., Lansbury, P.T., Jr. & Kelly, J.W. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA 96, 9989–9990 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ray, S.S. & Lansbury, P.T., Jr. A possible therapeutic target for Lou Gehrig's disease. Proc. Natl. Acad. Sci. USA 101, 5701–5702 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Clement, A.M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Kawahara, Y. et al. Glutamate receptors: RNA editing and death of motor neurons. Nature 427, 801 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Lipton, S.A. Sporadic ALS: blame it on the editor. Nat. Med. 10, 347 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eliezer Masliah and Mark Barsoum for providing histological images, Huaxi Xu for reading the manuscript and our colleagues for helpful discussions. This work was supported by NIH grants R01 NS44314 and R01 NS047456 (to E.B-W.) and P01 HD29587, R01 EY05477, R01 EY09024, R01 NS43242, R01 NS44326 and R01 NS41207 (to S.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ella Bossy-Wetzel or Stuart A Lipton.

Ethics declarations

Competing interests

S.A.L. is the named inventor on patents for the drug memantine to treat neurodegenerative disorders. Under agreements between Children's Hospital/Harvard Medical School and Forest Laboratories/Merz & Co./Neurobiological Technologies, Inc., S.A.L. is thus entitled to a share of sales royalties received by the hospital. S.A.L. owns no stock in these companies. The terms of this arrangement are being managed by Harvard Medical School in accordance with its conflict-of-interest policies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossy-Wetzel, E., Schwarzenbacher, R. & Lipton, S. Molecular pathways to neurodegeneration. Nat Med 10 (Suppl 7), S2–S9 (2004). https://doi.org/10.1038/nm1067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing