
Pan-cancer analysis of the extent and consequences of intra-
tumor heterogeneity

Noemi Andor1,2, Trevor A. Graham3,4, Marnix Jansen3,4, Li C. Xia1, C. Athena Aktipis5,6, 
Claudia Petritsch7,8,9, Hanlee P. Ji1,10,*, and Carlo C. Maley5,11,12,*

1Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, 
CA, United States

2Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German 
Research Center for Environmental Health, Neuherberg, Germany

3Evolution and Cancer Laboratory, Barts Cancer Institute, Barts, UK

4London School of Medicine and Dentistry, Queen Mary University of London, UK

5Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA, 
United States

6Department of Psychology, Arizona State University, Tempe, AZ, United States

7Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, CA, 
United States

8Department of Neurological Surgery and the Brain Tumor Research Center, University of 
California San Francisco, CA, United States

9Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Stanford 
University, Palo Alto, CA, United States

10Stanford Genome Technology Center, Stanford University, Palo Alto, CA, United States

11Centre for Evolution and Cancer, Institute for Cancer Research, London, UK

12Biodesign Institute, Arizona State University, Tempe AZ, United States

Abstract

Corresponding co-authors: maley@asu.edu; hanleeji@stanford.edu.
*These authors contributed equally to this work

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Code availability. CellProfiler pipeline employed to detect and measure nuclei from H&E images is available at http://dna-
discovery.stanford.edu/projects/completed-projects/pan-cancer-ith.html

AUTHOR CONTRIBUTIONS
N.A. developed analytic methods, analyzed the data and wrote the manuscript. T.A.G. developed analytic methods, gave technical 
support and conceptual advice and wrote the manuscript. M.J. analyzed the histopathology images and advised on data visualization 
and interpretation. L.C.X. advised on the choice of statistical methods and design of statistical analysis. C.A.A. gave technical support 
and conceptual advice. C.C.M. developed analytic methods, wrote the manuscript and supervised the project. H.P.J. wrote the 
manuscript and supervised the project. C.P. supervised the project. All authors edited the manuscript.

HHS Public Access
Author manuscript
Nat Med. Author manuscript; available in PMC 2016 July 01.

Published in final edited form as:
Nat Med. 2016 January ; 22(1): 105–113. doi:10.1038/nm.3984.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dna-discovery.stanford.edu/projects/completed-projects/pan-cancer-ith.html
http://dna-discovery.stanford.edu/projects/completed-projects/pan-cancer-ith.html


Intra-tumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used 

EXPANDS and PyClone to detect clones >10% frequency within 1,165 exome sequences from 

TCGA tumors. 86% of tumors across 12 cancer types had at least two clones. ITH in nuclei 

morphology was associated with genetic ITH (Spearman ρ: 0.24–0.41, P<0.001). Mutation of a 

driver gene that typically appears in smaller clones was a survival risk factor (HR=2.15, 95% CI: 

1.71–2.69). The risk of mortality also increased when >2 clones coexisted (HR=1.49, 95% CI: 

1.20–1.87). In two independent datasets, copy number alterations affecting either <25% or >75% 

of a tumor’s genome predicted reduced risk (HR=0.15, 95% CI: 0.08–0.29). Mortality risk also 

declined when more than four clones coexisted in the sample, suggesting a tradeoff between costs 

and benefits of genomic instability. ITH and genomic instability have the potential to be useful 

measures universally applicable across cancers.

Cancers are a mosaic of clones of varying population sizes, different genetic makeup and 

distinct phenotypic characteristics1–4. This intra-tumor heterogeneity provides the fuel for 

the engine of natural selection that drives the process of carcinogenesis and acquired 

therapeutic resistance in neoplasms1,5. When analyzing genome sequencing data derived 

from single tumor samples, it is important to recognize that technically, sequences obtained 

from each tumor sample encode a tumor-metagenome, since they represent the aggregate 

genomes of all clones that coexist within the sample6,7,10–12. Recently, McGranahan et al. 
used exome-sequencing data derived from single tumor samples to determine the clonal 

status of known, actionable drivers across 9 cancer types and to identify events that trigger 

clonal expansions, causing ITH6. However, the availability of just one sample per tumor and 

moderate sequencing depth has limited the opportunity for systematic analysis of extent and 

the clinical consequences of ITH, in previous pan-cancer studies12–14,3,7–9. To overcome 

these limitations, a variety of different algorithms have been developed to deconvolute 

tumor-metagenomes. These algorithms estimate the cellular prevalence of mutations and 

quantify ITH15–19. We leveraged two of these tumor mixture separation algorithms, 

EXPANDS18 and PyClone17, to quantify ITH from TCGA exome sequencing data, and to 

validate the robustness of our results.

RESULTS

Intra-tumor genetic heterogeneity exists in all tumor types

We measured the number and size of genetically diverse clones of 1,165 primary tumor 

samples across 12 cancer types from The Cancer Genome Atlas (TCGA), using paired 

tumor-normal exome sequencing data. These samples originated from a single sequencing 

center (the Broad Institute) and were chosen because they fulfilled established strict criteria 

to obtain uniform sequence data quality and depth (Supplementary Fig. 1.1). As clone 

detection sensitivity is highly dependent on genomic depth and breadth of coverage, these 

criteria are necessary to ensure that measures of ITH derived from these sequences are 

comparable. Detailed inclusion criteria are available in Supplementary Note 1.2.

Somatic single nucleotide variants (SNVs) and copy number variants (CNVs) were called 

using MuTect20 and ExomeCNV21 respectively (Supplementary Fig. 1.3). We distinguished 

non-synonymous SNVs and splice site or regulatory region SNVs (generally referred to as 
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non-silent) from synonymous SNVs and SNVs within intergenic and intronic regions 

(referred to as silent). The incidence of CNVs and somatic non-silent SNVs varied 

considerably within and between tumor types (Fig. 1a–c), similar to results obtained from 

other genome wide sequencing studies13,22,23.

EXPANDS was applied to all detected somatic SNVs (including silent SNVs), loss of 

heterozygosity (LOH) and copy number estimates to infer the number, size, and genetic 

content of subpopulations of cells that coexisted in the tumor (Fig. 1d). Briefly, EXPANDS 

models the cellular prevalence of each SNV as a copy-number dependent probability 

distribution. Subsequently, these cellular prevalence distributions are clustered to obtain the 

genetic content of each subpopulation, i.e. the set of SNVs and CNVs that accumulated in 

ancestral cells prior to each clonal expansion. Previous results18 indicate that the sequencing 

data available per tumor (on average 5,221 Mb reads) translates to an accuracy of 50–80% at 

which EXPANDS detects genetic heterogeneity at a macroscopic resolution24 (i.e. clones 

present in ≥ 10% of the sample). An independent algorithm, PyClone17, was used to validate 

the conclusions derived from EXPANDS. PyClone infers the cellular prevalence of SNVs 

differently from EXPANDS. In particular, PyClone does not model subclonal CNVs and 

leverages high depth rather than high breadth of sequencing17 (Supplementary Note 2.1).

In general, the cellular prevalence of SNVs assigned by PyClone and EXPANDS was 

concordant for SNVs located within segments of clonal copy number (Spearman ρ=0.77). 

However, for regions in which CNVs affect only a subset of tumor cells, EXPANDS and 

PyClone tended to make different inferences for cellular prevalence of SNVs within those 

regions (ρ=0.25; Supplementary Fig. 2.1b,c).

Subpopulations detected within the same tumor sample may have sizes that cumulatively 

exceed 100%, as a subpopulation may be nested in a parental population that carries earlier 

mutations. Both algorithms detect such nested subpopulation compositions. We will refer to 

these inferred subpopulations as clones, and to the cellular prevalence of a subpopulation 

within the tumor sample as its clone size. As noted previously, we define the term ‘tumor-

metagenome’ as the aggregate genomes of all co-existent clones within a tumor.

Assuming a monoclonal tumor origin, the largest inferred clone in each sample corresponds 

to the first (founder) clonal expansion. This holds true, regardless of the fitness difference 

between the founder and descending clones. The cellular prevalence of founder-mutations 

will always be greater than or equal to the cellular prevalence of mutations acquired by 

descendant subclones, even if these later subclones proliferate faster than the founder. This 

implies that the size of the largest clone is also a measure of tumor purity (Fig. 1e); this was 

confirmed by an independent study that compared the performance of EXPANDS to four 

other methods that predict tumor purity25. The size of the largest clone was correlated to 

tumor purity as predicted from expression profiling with ESTIMATE26 (EXPANDS: 

Pearson r=0.43; P≪1E–6; PyClone: r=0.63; P≪1E–6; Supplementary Fig. 2.2a).

We observed that the number of somatic SNVs in large clones correlated with age at 

diagnosis (ρ=0.3; P≪1E–6), a result previously reported for chronic lymphocytic leukemia 
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(CLL)10. In addition, the number of SNVs in small clones also correlated with age (ρ=0.18; 

P=5E–6; Supplementary Fig. 2.2b,c).

We compared the extent of genetic ITH across and within tumor types (Fig. 2a–d). The 

difference between tumor types in the number of clones they harbor was similar before 

(Supplementary Fig. 2.3a) and after correcting for tumor purity (Fig. 2c, Online Methods). 

On average four clones were estimated to coexist in a tumor at the time of biopsy or surgical 

resection (median clone number EXPANDS: 5; PyClone: 3; Fig. 2a,b). There was a median 

of 10 (EXPANDS estimate) to 16 (PyClone estimate) non-silent somatic SNVs per clone 

and the distribution of clone sizes across tumor types was relatively uniform (Supplementary 

Fig. 2.4a and Fig. 2e–h). Notably, reduced detection sensitivity (due to low tumor purity) 

was not sufficient to explain the smaller number of clones observed in low-purity tumors 

(Supplementary Fig. 2.4b). In 14% (EXPANDS estimate) to 20% (PyClone estimate) of the 

analyzed tumor samples, only a single, genetically homogeneous cell population was 

detected. Even for thyroid carcinoma – the least heterogeneous tumor type – two or more 

clones were predicted to coexist in >50% of the samples (EXPANDS estimate: 52%; 

PyClone estimate: 65%). Therefore, we concluded that genetic ITH occurs in the vast 

majority of cancers represented among the 12 types that we included in this study.

Driver genes are mutated in clones of characteristic sizes

To investigate the influence of driver gene mutation incidence on genetic ITH, we analyzed 

259 cancer driver genes (CAN-genes; Supplementary Table 3.1). A gene was included as 

significantly associated with a given cancer type based on: i) prior experimental evidence; ii) 

frequency of gene-mutations in our sample cohort and iii) mutation deleteriousness (Online 

Methods). Shown in Fig. 3a are the 124 non-private CAN-genes (48%) that are mutated in a 

minimum of two cancer types.

Next, we tested whether clones differ in their size depending on which CAN-genes are 

mutated in the corresponding clones. The size of a clone depends on its selective fitness 

(how fast it expands relative to the other clones within a tumor) and on its formation time 

(when the underlying clonal expansion started). CAN-gene SNVs specific to a given clone 

may therefore have a direct impact on its size. To test this possibility, we first normalized 

clone sizes by tumor purity. We then calculated the mean and variance in clone-size among 

all clones with non-silent mutations in a given CAN-gene and compared them to the 

variance calculated from random samples of clone sizes from our data (Supplementary Fig. 

3.2).

The size of clones harboring CAN-gene mutations varied across CAN-genes (Fig. 3a) and 

was correlated to both, the relative order of driver gene mutations reported in earlier 

studies13,28–31 and to the clone sizes predicted by PyClone (0.43<r<0.94; 3.4E–18<P<0.12; 

Supplementary Fig. 3.3a,b). Across tumor samples, and even across tumor types, CAN-

genes were often mutated in clones of a characteristic size, i.e. the variance in clone size was 

significantly lower than expected by chance (one-sided t-test: P<0.05; Fig. 3a). Citing an 

example, TP53 SNVs were found in larger clones (EXPANDS: 0.811; PyClone: 0.746 

average cancer-cell fraction) in all nine cancers significantly associated with TP53 genetic 

aberrations. In contrast, somatic SNVs in DMBT1 were found in smaller clones 
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(EXPANDS: 0.641; PyClone: 0.652 average cancer cell fraction) in the three cancers in 

which DMBT1 was among the drivers (Fig. 3a).

For a subset of CAN-genes however, we found significant differences in the dominance of 

mutated clones depending on cancer type. For example, clones with ERBB3 mutations were 

larger in bladder cancer than they were in any other cancer type, while clones with PTEN 
mutations grew particularly large in Glioblastoma (Fig. 3b). Clones with SNVs in CAN-

genes that are druggable (n=98) did not have significantly different sizes as compared to 

clones with SNVs in the remaining CAN-genes (n=161; T-test: P=0.77).

Furthermore, clone size inferiority of a mutated CAN-gene (as shown in Fig. 3a) was 

correlated to the propensity of the CAN-gene as risk factor (univariate Cox EXPANDS: 

P=3.2E–07, HR=2.86; PyClone: P=0.005, HR=1.67). For instance, mutations in CAN-genes 

within the lower 5% average clone size were associated with poor outcome (Fig. 3c). This 

relation was also significant in low-grade gliomas, kidney carcinoma and glioblastoma 

(Supplementary Table. 4.3a). Several cellular functions/pathways were associated 

exclusively with small-size and medium-size clones, but not with large-size clones including 

tyrosine-protein kinase activity (P=1.39E–12) and positive regulation of locomotion 

(P=3.39E–9) (Supplementary Tables 3.1 and 3.4).

Next, we used the size-rankings of clones with CAN-gene mutations to compare cancer 

types (Fig. 3d). For CAN-genes that are critical among different tumor types, we measured 

whether clones containing mutations in these genes are of similar size, regardless of tumor 

type. Head and neck cancer, low-grade glioma and glioblastoma showed significant clone-

size similarities to most other cancer types (0.12≤ρ≤0.43; P<0.05), though all cancers were 

similar to at least one other cancer type (Fig. 3d; PyClone and EXPANDS: 0.12≤ρ≤0.58; 

P≤0.05).

Finally, we tested whether distinct SNV categories differ in how well they model the number 

of detected clones per tumor. Per cancer type, silent SNVs in non-CAN-genes accounted for 

an average of 25% of the variability in the number of clones. Including silent SNVs in CAN-

genes as predictors of clone number did not improve the model. In contrast, including non-

silent SNVs in CAN-genes improved the predictions, accounting for 30% of the variability 

in the number of clones (log-likelihood test: P<0.05; Fig. 3e). These results suggest that 

mutations driving clonal expansions are more common among non-silent SNVs in CAN-

genes, than among other SNV categories (Online Methods and Supplementary Note 2.1).

Histologic ITH and proliferation rate reflect genetic ITH

Nuclear size and staining variability is a standard histomorphologic metric of tumor 

differentiation, facilitating comparisons across cancers independent of tissue origin. A total 

of 2,231 H&E images were available at TCGA for 930 (80%) of the analyzed tumor samples 

(Supplementary Fig. 1.3). To quantify histologic ITH from these images, we measured the 

variability in nuclei size and staining intensity (Supplementary Note 2.5). For each tumor, 

the established image-analysis software CellProfiler34 was used to measure the size and 

staining intensity of every nucleus detected on the tumor’s H&E images35,36. A 

histopathologist conducted an independent and blinded scoring of a subset of 17 H&E 
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images (Supplementary Fig. 2.6), which confirmed the accuracy of nuclear diversity scoring 

by CellProfiler (ρ=0.64, P=0.007; Fig. 4a,b).

The extent of nuclear ITH varied between tumor types (Fig. 4c). Greater nuclear diversity 

was observed with increasing clone number (Fig. 4d) in kidney cancer (ρ=0.413; FDR 

adjusted P=0.004), stomach cancer (ρ=0.406; FDR adjusted P=2.97E–4), head and neck 

cancer (ρ=0.278; FDR adjusted P=0.009), bladder cancer (ρ=0.246; FDR adjusted P=0.022) 

as well as across all 12 cancer types (ρ=0.243; FDR adjusted P=8.15E–13). Increased 

nuclear diversity with increasing clone number was observed for both PyClone and 

EXPANDS based clone number predictions, as well as after normalizing nuclear and genetic 

ITH measures to account for tumor purity (Supplementary Table 3.5).

We used mRNA expression levels of the proliferation marker KI67, available for 854 (73%) 

of the samples, to measure proliferation rate37. Clone number was significantly correlated to 

proliferation rate within low-grade glioma (ρ=0.18; P=0.021) and prostate cancer (ρ=0.21; 

P=0.046) as well as across cancers (ρ=0.31; P=2.69E–20). However, tumor-type specific p-

values did not remain significant after FDR correction for multiple testing (P>0.05). For a 

subset of cancer types (the three squamous cell carcinomas of the head and neck, lung and 

cervix), very heterogeneous tumors (>8 clones) had low KI67 expression (Supplementary 

Figure 2.7).

Overall, these results show that nuclear and cellular features typically associated with 

aggressive disease correlate with greater genetic ITH across cancer types.

Prognostic value of genomic instability and genetic ITH

We tested whether measures of genomic instability and genetic ITH (Supplementary Table 

4.1) could predict overall and progression free survival. We constructed univariate Cox 

models for each cancer type separately as well as pan-cancer Cox models (Supplementary 

Tables 4.2 and 4.3). Prostate adenocarcinoma and thyroid carcinoma were excluded from the 

cancer type specific survival analysis due to insufficient availability of uncensored survival 

information (Supplementary Table 1.4).

When considering each cancer type separately, no significant monotonic association 

between clone number and survival was evident (P>0.05; Supplementary Table 4.3), apart 

from gliomas (EXPANDS: P=0.03, HR=3.25; PyClone: P=0.04, HR=2.34). Across cancer 

types, the presence of more than two clones was associated with worse overall survival as 

compared to tumors in which either one or two clones were detected (Log-rank test 

EXPANDS: P=8.6E–4, HR=1.49; PyClone: P=0.09, HR=1.21; Fig. 5a and Supplementary 

Figs. 4.4a,d).

The association between clone number and survival was non-linear. An increased risk with 

increasing clone number was only observed for up to 4 clones. Additional diversification, 

beyond 4 clones, did not impart further risk. In fact, a tendency for reduced risk was 

observed among highly diverse tumors. This risk reduction did not reach significance in the 

univariate setting (Supplementary Fig. 4.5a), although it was significant in the multivariate 

analysis described below. The non-linear relationship between ITH and survival was also 
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apparent when using alternative measures of ITH (e.g. nuclear diversity or accounting for 

differential tumor purity; Supplementary Fig. 4.5b,d,e).

A measurement of genomic instability is the fraction of the tumor-metagenome affected by 

CNVs (CNV abundance)38. Because genomic instability correlates with ITH 

(Supplementary Fig. 4.5f), we hypothesized that increased genomic instability necessary to 

produce a high level of ITH (i.e. >4 detected clones) may adversely affect tumor cell fitness 

following the generation of deleterious CNVs. We therefore analyzed the impact of somatic 

CNV abundance in the tumor-metagenomes and its relation to ITH. We find that low or high 

CNV abundance, i.e. CNVs affecting either a very low or a very high fraction of the tumor-

metagenome, was predictive of improved survival (Log-rank test: P=5E–6; HR=0.15; Fig. 

5b). This was not the case for low/high somatic SNV abundance (adjusted P>0.05; 

Supplementary Table 4.2a,b). We validated this result using CNVs measured by genome-

wide SNP-arrays from: i) the same tumor samples and ii) an independent dataset consisting 

of 2,010 tumor samples, across seven distinct cancer types. Both validation analyses 

confirmed that intermediate CNV abundance is associated with poor survival 

(Supplementary Table 4.6 and Fig. 4.7a,b).

The highest risk was observed among individuals with 50–75% of their tumor-metagenome 

affected by CNVs in both the original and the independent datasets (Fig. 5c and 

Supplementary Figs. 4.7a,b). In fact, tumors with 50–75% CNV abundance did represent the 

highest risk group among individuals with bladder cancer, head and neck cancer, lung 

adenocarcinoma, stomach adenocarcinoma, cervical cancer and low-grade gliomas 

(Supplementary Fig. 4.8). These observations suggest the existence of an optimal degree of 

genomic instability that is independent of tumor-type.

Of the 12 tumor types, Glioblastoma was the only cancer for which >75% CNV abundance 

was associated with the worst prognosis (Supplementary Fig. 4.8g). Notably, with 85% of 

individuals diagnosed with Glioblastoma undergoing chemo- and/or radiotherapy, DNA 

damaging therapy is administered more frequently for Glioblastoma than for any of the other 

analyzed tumor types (Supplementary Table 1.4). Therefore we verified whether or not 

adjuvant chemo- or radiotherapy affected the non-linear association between CNV 

abundance and survival. In contrast to the 643 individuals who did not undergo chemo- or 

radiotherapy, the association between intermediate CNV abundance and poor survival was 

not significant amongst the 514 individuals treated with DNA-damaging agents (Fig. 5d). 

This finding was confirmed in the independent SNP-array dataset, where tumors with 

intermediate CNV abundance did represent the highest risk group among untreated, but not 

among individuals treated with chemo- or radiotherapy (Supplementary Fig. 4.7c,d).

A tumor with a critical level of >75% CNV abundance per tumor-metagenome may either be 

composed of many clones with low CNV abundance per clone, or few clones, each carrying 

high CNV abundance (Supplementary Fig. 4.9b,c). We used a clone number of 2 and 75% 

CNV abundance as thresholds to stratify untreated individuals into four groups with: i) CNV 

abundance below 75% and maximum 2 clones; ii) CNV abundance below 75% and 

minimum 3 clones; iii) CNV abundance above 75% and maximum 2 clones; and iv) CNV 

abundance above 75% and minimum 3 clones. Overall survival between these four groups 
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was significantly different (Log- rank test EXPANDS: P=0.0015; HR=1.4). In general, as 

before, low clone number was associated with good outcome. In particular, the best outcome 

among the four groups was observed when a high CNV burden was shared among ≤2 clones 

(group iii; Fig. 5e and Supplementary Fig. 4.4e). When stratifying individuals who had 

undergone chemo- and/or radiotherapy in the same way, differences in clone number, rather 

than CNV burden, were associated with differences in overall survival between the four 

groups (Log-rank test EXPANDS: P=0.038; HR=1.4; Fig. 5e). Stratification based on 

PyClone derived clone numbers also supported these conclusions, albeit with borderline 

significance (P≤0.07, Supplementary Fig. 4.4b,c).

To account for factors that may confound the associations observed between clinical 

outcome and genetic ITH, the prognostic significance of clone number and low/high CNV 

abundance were evaluated with multivariate Cox models (Online Methods). All tumor types 

were included in a pan-cancer Cox model, except for gliomas, as the staging system is not 

applicable to gliomas. Across cancers, both, genomic instability and genetic ITH remained 

significantly associated to survival in the multivariate setting (Table 1). As concluded from 

univariate analysis (Supplementary Fig. 4.5a,b), the relation between clone number and 

survival was non-linear: an increased risk with increasing clone number was only observed 

for up to 4 clones. Additional diversity beyond 4 clones, was associated with an increase in 

overall CNV burden and a significant decrease in risk of mortality (Supplementary Fig. 

4.5c,f). A similar scenario was observed within 8 out of the 10 analyzed cancer types, where 

the highest hazard was associated with an intermediate number of clones (between 3 and 5). 

ITH levels above/below an intermediate number of clones were associated with significantly 

reduced risk (multivariate Cox: HR=0.01–0.21; P≤0.05) relative to the intermediate group in 

head and neck cancer, melanoma and kidney cancer (Supplementary Fig. 4.5g and Table 

4.10).

DISCUSSION

Quantification of ITH is a key measure of tumor evolution. We performed a cross-sectional 

analysis of ITH in 1,165 cancers from 12 cancer types, revealing the extent of ITH, and 

supporting its potential as a universal, though perhaps non-linear, prognostic biomarker. 

Evidence from two tumor mixture separation algorithms and from H&E imaging analysis, 

collectively indicate that ITH is a feature of the vast majority of cancers diagnosed.

To our knowledge, this is the first report of a cross-cancer correlation between genetic ITH 

and histopathologic ITH, suggesting that measures of tumor H&E sections can provide a 

proxy for genetic ITH. Currently, single tumor samples provide the only opportunity to 

study genetic ITH in a large pan-cancer cohort6. Measuring ITH from single tumor samples 

benefits from high depth and high genomic breadth of coverage. Exome-sequencing data 

represents the best tradeoff between these two sequencing- design parameters that is 

currently available at TCGA, across a broad range of tumors and cancer types. Using 

exome-sequencing to quantify ITH implies that clone distinction is confined to coding 

regions. Two clones that only differ in non-coding regions would be indistinguishable. 

Whole genomes sequenced at higher depth and multiple geographical tumor-samples will 
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further improve our sensitivity to detect small clones and increase our resolution on clonal 

composition and its variability across cancer types.

Our results show that mutations in particular driver genes are associated with clones of a 

characteristic size, often independent of tumor type. This observation suggests that there 

appear to be constraints on the order in which neoplastic cells acquire driver events43 or that 

these events differ in the magnitude of the fitness-advantages they provide to neoplastic cells 

(Fig. 3a). Small clones may be fit, but evolve late in tumor progression. Alternatively, they 

may be less fit, but function as a “cornucopia of evolution” from which new clones 

frequently emerge. Both alternatives explain both, why these clones are so small and why 

their presence is associated with poor outcome (Fig. 3c). Importantly, the number of mutated 

CAN-genes did not predict outcome, suggesting that the relation between survival and 

presence of small clones was not confounded by CAN-gene mutation incidence.

The significant association between high clone number and poor survival detected in the 

combined analysis of low-grade glioma and glioblastoma may be interesting in the context 

of the highly variable clinical behavior of low-grade gliomas. A recent study found that 

histopathologic classification may overlook a subset of glioblastoma tumors, labeling them 

as low-grade gliomas7. Knowing the extent of ITH may help improve differential diagnosis 

between glioblastoma and low-grade glioma44.

As previously observed in ovarian, gastric, non-small cell lung cancers and ER− breast 

cancers45,46, individuals with intermediate CNV burdens detected in their primary untreated 

tumor had the worst overall survival. We find this association is present across several tumor 

types, but its strength varies with the type of therapy the individuals received subsequently. 

Our results suggest a potential advantage when tumors with intermediate levels of CNVs are 

treated with adjuvant chemo- and radiotherapy (Fig. 5d). Chemo- and radiotherapy may be 

particularly effective against tumors with intermediate CNV burdens, by pushing them past 

the limit of ‘tolerable’ genomic instability. Our results from two distinct high-throughput 

technologies measuring CNV abundance in two independent pan-cancer cohorts suggest that 

this limit is exceeded when >75% of a tumor’s metagenome is affected by CNVs, 

independent of cancer type. Given that >37% of cancers have been shown to undergo whole 

genome doubling events12, in will be of interest to see whether these tumors have the same 

phenotype as tumors with >75% CNV burden.

In light of recent evidence supporting a stronger role of CNVs than SNVs in developing and 

maintaining ITH11, this upper limit of tolerable genomic instability may be responsible for 

the non-linear association we observed between genetic ITH and survival. Previously, low 

ITH has been found to predict favorable prognosis in Barrett’s esophagus49,50, head and 

neck cancer11, as well as leukemia10,51. Consistent with these studies we found that the 

presence of only one or two clones is in general prognostic of favorable outcome, especially 

when these few clones share a high CNV burden. However, diversification beyond four 

clones was associated with decreased risk.

The decrease in risk may be because large numbers of clones can attract more immune-cells. 

Alternatively, the decrease in risk may be in part due to the technical difficulty of 
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distinguishing between ITH and genomic instability, in particular as both measures increase. 

Finally, it may be a consequence of a tradeoff that exists between the chance of acquiring an 

advantageous alteration initiating a new clonal expansion and the risk of generating inviable 

daughter cells. The observed synchronous increase of ITH and CNV burden suggests that 

efforts aimed at modulating this tradeoff may represent a new therapeutic avenue to slow 

tumor evolution and improve clinical outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tumor-metagenomes and subclonal genomes in 12 tumor types from TCGA
(a) Prevalence of non-silent somatic SNVs per tumor. Percentage of tumor-metagenome 

affected by (b) single copy gains/amplifications and (c) single copy losses. (d) Clonal 

composition inferred from SNVs and copy numbers. Every sample contains a founder tumor 

population (yellow), identified as the largest clone within the sample. Each change in color 

marks the presence of an additional clone at the indicated size, calculated as % of the 

founder population size (y-axis). Color-variety within each tumor-type panel reflects the 

extent of intra-tumor heterogeneity in the corresponding tumor type. The average number of 

detectable (>10% frequency) clones increases from thyroid carcinoma (left) to melanoma 

(right). (e) The size of the founder clone is a measure of tumor purity. The exact number of 

tumors of each type (n) is indicated at the bottom of each panel.
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Figure 2. Intra-tumor genetic heterogeneity in 12 tumor types
Clone number distribution predicted by EXPANDS (a) and PyClone (b) across tumor types. 

Violin plots of clone number distribution predicted by EXPANDS (c) and PyClone (d) 

within tumor types. Clone size distribution predicted by EXPANDS (e) and PyClone (f) 
across tumor types. Violin plots of clone size distribution predicted by EXPANDS (g) and 

PyClone (h) within tumor types. EXPANDS derived clone numbers (a, c) and all clone sizes 

(e-h) have been normalized by tumor purity. For PyClone derived clone numbers, 

normalization by tumor purity was not necessary. Violin plots contain marks for the mean 

(black lines) and median (red lines). [Thyroid = Thyroid Carcinoma; Prostate = Prostate 

Adenocarcinoma; Kidney = Kidney Renal Clear Cell Carcinoma; Head and Neck = Head 

and Neck Squamous Cell Carcinoma; Cervical = Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma; Stomach = Stomach Adenocarcinoma; Lung (adeno) = Lung 

Adenocarcinoma; Bladder = Bladder Urothelial Carcinoma; Lung (squam) = Lung 

Squamous Cell Carcinoma; Melanoma = Skin Cutaneous Melanoma].
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Figure 3. Association of driver gene mutations to clone size and clone number
(a) Clone sizes were predicted by EXPANDS for mutations in 124 CAN-genes and 

normalized by purity. For each cancer type CAN (x-axis) and gene G (y-axis), average clone 

size was calculated across all CAN clones that harbor non-silent SNVs in G. Blank entries 

denote that G was not significantly associated to CAN. SNVs in CAN-genes often have the 

tendency to occur in clones of characteristic sizes, independent of cancer type (one-sided t-

test: *P<0.05). (b) Mutations in some CAN-genes tend to drive large clonal expansions in 

certain cancer types, for example ERBB3 mutations in bladder carinoma and PTEN 
mutations in Glioblastoma (one-sided t-test: **P<1E–4). (c) SNVs in CAN-genes that 

characteristically grew to smaller clones predicts poor prognosis across tumor types (Log-

rank test: P=2.9E–4; HR=2.72). (d) Clones with CAN-gene mutations have similar sizes 

across certain tumor types, suggesting the order/selective advantage of CAN-gene mutations 

is often not tissue-specific. Pairwise similarity between tumor types is calculated as 

Spearman correlation (**P<0.01; *P<0.05) based on EXPANDS (above diagonal) and 

PyClone results (below diagonal). (e) The number of clones identified in a sample depends 

on SNV incidence, but not all SNV categories are equally associated with the resulting 

number of clones. Non-silent SNV incidence in CAN-genes (red; mean = 2 genes) explain 

variability in clone number better than silent SNV incidence in CAN-genes (yellow; mean = 

1 gene) or non-silent SNV incidence in non-CAN-genes (cyan; mean =128 genes). Log-

likelihood test: **P<0.01; *P<0.05.
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Figure 4. Intra-tumor nuclear diversity accompanies intra-tumor genetic diversity
(a) Quantitation of intra-tumoral nuclear diversity from H&E images. Conventional H&E 

stainings (upper panels) of two bladder cancer specimens are shown. The lesion on the left 

(TCGA-GD- A3SO) demonstrates monomorphic high-grade nuclei with open chromatin and 

prominent nucleoli, while the lesion on the right (TCGA-BT-A0YX) demonstrates nuclei 

that vary from small with condensed chromatin to very large with open chromatin 

(anisochromasia). CellProfiler outlines nuclei (lower panels) and quantifies nuclear 

variability from the H&E images. (b) Quantitation of nuclear diversity is shown for the two 

bladder cancer specimens in panel a (black arrows) along with 15 other bladder cancer 

specimens. Independent ranking of intra-tumor nuclear diversity across these 17 bladder 

cancer specimens by an expert histopathologist (blue) validates the automated nuclear 

diversity measures (red) (ρ=0.64; P=0.007). (c) Violin plots of nuclear diversity within 

tumor types. Nuclear diversity was normalized to account for differences in tumor purity. 

Tumor types are ordered according to their extent of genetic ITH (Fig. 2b). (d) Nuclear 

diversity per tumor (x-axis; quantified based on nuclear intensity and size diversity) 

increases with increasing clone number per tumor (y-axis). This is true for all cancers 

combined (ρ=0.243; P=6.30E–14) as well as for the specific types shown (* ρ>0.25; P<0.01; 

** ρ>0.4; P<0.001). The p-values shown here have not been corrected for multiple 

hypothesis testing.
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Figure 5. Clone number and CNV burden appear to be universal prognostic biomarkers
(a) The presence of more than two clones detected by EXPANDS in a tumor sample predicts 

poor overall survival across all 12 tumor types (HR=1.497). (b) Survival curves are stratified 

by the fraction of the tumor-metagenome affected by CNVs (CNV abundance) across 12 

tumor types. Intermediate levels of CNV abundance predict poor outcome (HR=0.597). (c) 

Hazard ratios as a function of CNV abundance. The hazard ratio for each of the upper three 

CNV abundance quartiles is calculated relative to the hazard of individuals in the lowest 

quartile (0–25% CNV abundance) and displayed along with 95% confidence interval. (d) 

Individuals treated with chemo- or radiotherapy (right panel) and untreated individuals (left 

panel) are stratified by CNV abundance. Individuals with low (<25%) or high CNV 

abundance (>75%) progress more slowly than individuals with intermediate CNV abundance 

levels (25–75%), especially within the group that did not receive adjuvant chemo- or 

radiotherapy. (e) Untreated individuals (left panel) with few clones in their tumors (blue 

lines) survive longer than untreated individuals with a large number of clones detected in 

their tumors (red lines), especially when these few clones share a large CNV burden (blue 

continuous line). This is not the case for treated individuals (right panel). All hazard ratios 

were calculated with log-rank tests (** P<0.005; * P<0.05; • P<0.1). For each stratum in 

panels (a,b,e) at least 50% of the 12 analyzed tumor types were represented at >5% 

frequency.
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Table 1

Pan-cancer multivariate Cox model of overall survival.

P-value Hazard ratio Standard error (Coefficient) Z-score

4 clones (Ref.) NA 1.000 NA NA

1 or 2 clones vs. Ref. 0.006 0.442 0.300 −2.723

3 clones vs. Ref. 0.076 0.618 0.271 −1.776

5 clones vs. Ref. 0.007 0.450 0.296 −2.703

6 or 7 clones vs. Ref. 0.014 0.503 0.279 −2.463

8 or 9 clones vs. Ref. 0.014 0.489 0.290 −2.469

10 or more clones vs. Ref. 0.003 0.389 0.314 −3.011

Age at diagnosis 0.002 5.938* 0.579 3.078

Low/high CNV abundance 1.81E–04 0.129 0.548 −3.744

Pathologic stage 2.90E–08 3.339 0.217 5.548

MKI67 mRNA expression 2.21E–04 5.236 0.448 3.694

% Lymphocytes 0.141 0.310 0.796 −1.473

Model summary Likelihood ratio test=92 on 11 degrees of freedom, P=6.88E–15, n= 610, number of events= 157

*
The hazard ratio for ‘age at diagnosis’ may not be reliable (Test of Proportional Hazards: P=0.007).
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