Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells

Abstract

Interleukin 17 (IL-17)–producing T helper cells (TH-17 cells) have been characterized in mice as a distinct subset of effector cells, but their identity and properties in humans remain elusive. We report here that expression of CCR6 and CCR4 together identified human memory CD4+ T cells selectively producing IL-17 and expressing mRNA encoding the human ortholog of mouse RORγt, a transcription factor, whereas CCR6 and CXCR3 identified TH1 cells producing interferon-γ and T helper cells producing both interferon-γ and IL-17. Memory T cells specific for Candida albicans were present mainly in the CCR6+CCR4+ TH-17 subset, whereas memory T cells specific for Mycobacterium tuberculosis were present in CCR6+CXCR3+ T helper type 1 subset. The elicitation of IL-17 responses correlated with the capacity of C. albicans hyphae to stimulate antigen-presenting cells for the priming of TH-17 responses in vitro and for the production of IL-23 but not IL-12. Our results demonstrate that human TH-17 cells have distinct migratory capacity and antigenic specificities and establish a link between microbial products, T helper cell differentiation and homing in response to fungal antigens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-17-producing CD4+ T cells express CCR6 in both the peripheral blood of healthy donors and in the synovial tissues of patients with juvenile idiopathic arthritis.
Figure 2: CCR4 and CXCR3 distinguish two stable subsets of IL-17-producing T cells in the CCR6+ compartment.
Figure 3: Constitutive and inducible expression of RORC, TBX21 and GATA3 in memory T cell subsets.
Figure 4: CCR6 is upregulated in differentiating TH-17 cells.
Figure 5: C.albicans–specific memory T cells are skewed toward TH-17.
Figure 6: Hyphae of C.albicans prime TH-17 responses and induce IL-23 but not IL-12 release.

Similar content being viewed by others

References

  1. Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  2. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  3. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  4. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  5. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  6. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  Google Scholar 

  7. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1–polarizing program in dendritic cells. Nat. Immunol. 6, 769–776 (2005).

    Article  CAS  Google Scholar 

  8. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  9. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  10. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  Google Scholar 

  11. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  Google Scholar 

  12. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  Google Scholar 

  13. Happel, K.I. et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol. 170, 4432–4436 (2003).

    Article  CAS  Google Scholar 

  14. Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  Google Scholar 

  15. Sallusto, F., Mackay, C.R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  Google Scholar 

  16. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  Google Scholar 

  17. Liao, F. et al. CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 α. J. Immunol. 162, 186–194 (1999).

    CAS  PubMed  Google Scholar 

  18. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  19. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    Article  CAS  Google Scholar 

  20. Sallusto, F., Lenig, D., Mackay, C.R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  Google Scholar 

  21. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  Google Scholar 

  22. Rivino, L. et al. Chemokine receptor expression identifies Pre-T helper (Th)1, Pre-Th2, and nonpolarized cells among human CD4+ central memory T cells. J. Exp. Med. 200, 725–735 (2004).

    Article  CAS  Google Scholar 

  23. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 4, 1–23 (2004).

    Article  Google Scholar 

  24. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  25. Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol. 4, 78–86 (2003).

    Article  CAS  Google Scholar 

  26. Campbell, J.J. et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400, 776–780 (1999).

    Article  CAS  Google Scholar 

  27. Romagnani, S. Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 38, 881–885 (2002).

    Article  CAS  Google Scholar 

  28. Wakugawa, M. et al. CC chemokine receptor 4 expression on peripheral blood CD4+ T cells reflects disease activity of atopic dermatitis. J. Invest. Dermatol. 117, 188–196 (2001).

    Article  CAS  Google Scholar 

  29. Kohler, R.E., Caon, A.C., Willenborg, D.O., Clark-Lewis, I. & McColl, S.R. A role for macrophage inflammatory protein-3α/CC chemokine ligand 20 in immune priming during T cell-mediated inflammation of the central nervous system. J. Immunol. 170, 6298–6306 (2003).

    Article  CAS  Google Scholar 

  30. Ruth, J.H. et al. Role of macrophage inflammatory protein-3α and its ligand CCR6 in rheumatoid arthritis. Lab. Invest. 83, 579–588 (2003).

    Article  CAS  Google Scholar 

  31. Lukacs, N.W., Prosser, D.M., Wiekowski, M., Lira, S.A. & Cook, D.N. Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. J. Exp. Med. 194, 551–555 (2001).

    Article  CAS  Google Scholar 

  32. Homey, B. et al. Up-regulation of macrophage inflammatory protein-3α/CCL20 and CC chemokine receptor 6 in psoriasis. J. Immunol. 164, 6621–6632 (2000).

    Article  CAS  Google Scholar 

  33. Schaerli, P. et al. Characterization of human T cells that regulate neutrophilic skin inflammation. J. Immunol. 173, 2151–2158 (2004).

    Article  CAS  Google Scholar 

  34. Kikly, K., Liu, L., Na, S. & Sedgwick, J.D. The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation. Curr. Opin. Immunol. 18, 670–675 (2006).

    Article  CAS  Google Scholar 

  35. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  Google Scholar 

  36. Nakae, S. et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl. Acad. Sci. USA 100, 5986–5990 (2003).

    Article  CAS  Google Scholar 

  37. Cook, D.N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    Article  CAS  Google Scholar 

  38. Kwon, J.H., Keates, S., Bassani, L., Mayer, L.F. & Keates, A.C. Colonic epithelial cells are a major site of macrophage inflammatory protein 3α (MIP-3α) production in normal colon and inflammatory bowel disease. Gut 51, 818–826 (2002).

    Article  CAS  Google Scholar 

  39. Keller, M. et al. T cell-regulated neutrophilic inflammation in autoinflammatory diseases. J. Immunol. 175, 7678–7686 (2005).

    Article  CAS  Google Scholar 

  40. Kao, C.Y. et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-κB-dependent signaling pathway. J. Immunol. 175, 6676–6685 (2005).

    Article  CAS  Google Scholar 

  41. Kao, C.Y. et al. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J. Immunol. 173, 3482–3491 (2004).

    Article  CAS  Google Scholar 

  42. Yang, D. et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  Google Scholar 

  43. Khader, S.A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377 (2007).

    Article  CAS  Google Scholar 

  44. Del Prete, G.F. et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J. Clin. Invest. 88, 346–350 (1991).

    Article  CAS  Google Scholar 

  45. Cruz, A. et al. Cutting edge: IFN-γ regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J. Immunol. 177, 1416–1420 (2006).

    Article  CAS  Google Scholar 

  46. Flynn, J.L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  Google Scholar 

  47. Hohl, T.M., Rivera, A. & Pamer, E.G. Immunity to fungi. Curr. Opin. Immunol. 18, 465–472 (2006).

    Article  CAS  Google Scholar 

  48. Khader, S.A. et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-γ responses if IL-12p70 is available. J. Immunol. 175, 788–795 (2005).

    Article  CAS  Google Scholar 

  49. Huang, W., Na, L., Fidel, P.L. & Schwarzenberger, P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190, 624–631 (2004).

    Article  CAS  Google Scholar 

  50. Urban, C.F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8, 668–676 (2006).

    Article  CAS  Google Scholar 

  51. Geginat, J., Sallusto, F. & Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J. Exp. Med. 194, 1711–1719 (2001).

    Article  CAS  Google Scholar 

  52. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Messi for help with initial experiments, and M. Manz and M. Uguccioni for critical reading and comments. Anti-α4β7 (Act1) was from C.R. Mackay (The Garvan institute). Supported by the Swiss National Science Foundation (31-101962 to F.S. and 31-112678 to A.L.), the European Commission FP6 Programme (LSHP-CT-2003-503240 (Mucosal Vaccines for Poverty-Related Diseases); LSB-CT-2005-518167 (Innovative Chemokine-Based Therapeutic Strategies for Autoimmunity and Chronic Inflammation)), the National Institutes of Health (U19 AI057266-01) and the Helmut Horten Foundation (for The Institute for Research in Biomedicine).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Federica Sallusto or Giorgio Napolitani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

IL-17-producing T cells do not segregate with the expression of CLA or α4β7. (PDF 36 kb)

Supplementary Fig. 2

Phenotypic identification and sorting gates of memory CD4+ T cells. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta-Rodriguez, E., Rivino, L., Geginat, J. et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat Immunol 8, 639–646 (2007). https://doi.org/10.1038/ni1467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing