Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions

Abstract

Several regulatory regions are important for the expression of genes encoding T helper type 2 (TH2) cytokines, including TH2-specific DNase I hypersensitivity sites in the TH2 cytokine locus control region. Among these sites, Rad50 hypersensitive site 7 (RHS7) shows rapid TH2-specific demethylation after antigenic stimulation. To investigate the function of RHS7 in TH2 cell differentiation, we have generated RHS7-deficient mice. CD4+ T cells and mast cells showed a notable reduction in TH2 cytokine expression in vitro and TH2 responses in vivo were considerably impaired in RHS7-deficient mice. Deletion of RHS7 did not affect the expression of a linked Rad50 gene, but it did reduce long-range intrachromosomal interactions between the locus control region and promoters of the TH2 cytokine genes. Our findings show that RHS7 is essential for the proper regulation of TH2 cytokine gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted deletion of RHS7.
Figure 2: Expression of Rad50 is unaffected in RHS7-deficient mice.
Figure 3: Expression of IL-4 and IL-13 is reduced in TH0 and TH2 cells from RHS7-deficient mice.
Figure 4: Expression of IL-4 and IL-13 is reduced in BMMCs from RHS7-deficient mice.
Figure 5: Reduced expression of TH2 cytokines in RHS7-deficient mice on immunization with KLH.
Figure 6: Impaired interaction of RHS4 and RHS6 with the Il4 promoter in RHS7-deficient CD4+ T cells.
Figure 7: RHS7 deletion does not affect the formation of active chromatin in the LCR or the whole locus.

Similar content being viewed by others

References

  1. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  2. Dong, C. & Flavell, R.A. TH1 and TH2 cells. Curr. Opin. Hematol. 8, 47–51 (2001).

    Article  CAS  Google Scholar 

  3. Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  4. O'Garra, A. & Arai, N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol. 10, 542–550 (2000).

    Article  CAS  Google Scholar 

  5. Ansel, K.M., Lee, D.U. & Rao, A. An epigenetic view of helper T cell differentiation. Nat. Immunol. 4, 616–623 (2003).

    Article  CAS  Google Scholar 

  6. Smale, S.T. & Fisher, A.G. Chromatin structure and gene regulation in the immune system. Annu. Rev. Immunol. 20, 427–462 (2002).

    Article  CAS  Google Scholar 

  7. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  Google Scholar 

  8. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  Google Scholar 

  9. Takemoto, N. et al. TH2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region. Int. Immunol. 12, 1981–1985 (1998).

    Article  Google Scholar 

  10. Lee, D.U., Agarwal, S. & Rao, A. TH2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16, 649–660 (2002).

    Article  CAS  Google Scholar 

  11. Fields, P.E., Kim, S.T. & Flavell, R.A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-γ loci accompany TH1/TH2 differentiation. J. Immunol. 169, 647–650 (2002).

    Article  CAS  Google Scholar 

  12. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 3, 643–651 (2002).

    Article  CAS  Google Scholar 

  13. Yamashita, M. et al. Identification of a conserved GATA3 response element upstream proximal from the interleukin-13 gene locus. J. Biol. Chem. 277, 42399–42408 (2002).

    Article  CAS  Google Scholar 

  14. Makar, K.W. et al. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat. Immunol. 4, 1183–1190 (2003).

    Article  CAS  Google Scholar 

  15. Loots, G.G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000).

    Article  CAS  Google Scholar 

  16. Mohrs, M. et al. Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat. Immunol. 2, 842–847 (2001).

    Article  CAS  Google Scholar 

  17. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  Google Scholar 

  18. Solymar, D.C. et al. A 3′ enhancer in the IL-4 gene regulates cytokine production by TH2 cells and mast cells. Immunity 17, 41–50 (2002).

    Article  CAS  Google Scholar 

  19. Lee, G.R., Fields, P.E. & Flavell, R.A. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14, 447–459 (2001).

    Article  CAS  Google Scholar 

  20. Lee, G.R., Fields, P.E., Griffin, T.J., IV & Flavell, R.A. Regulation of the TH2 cytokine locus by a locus control region. Immunity 19, 145–153 (2003).

    Article  CAS  Google Scholar 

  21. Grosveld, F., van Assendelft, G.B., Greaves, D.R. & Kollias, G. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  22. Milot, E. et al. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87, 105–114 (1996).

    Article  CAS  Google Scholar 

  23. Fields, P.E., Lee, G.R., Kim, S.T., Bartsevich, V. & Flavell, R.A. Chromatin domains and enhancer activity identify functional components of the TH2 cytokine locus control region. Immunity (in the press).

  24. Spilianakis, C.G. & Flavell, R.A. Long range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  25. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  26. Bird, A.P. & Wolffe, A.P. Methylation-induced repression—belts, braces, and chromatin. Cell 99, 451–454 (1999).

    Article  CAS  Google Scholar 

  27. Attwood, J.T., Yung, R.L. & Richardson, B.C. DNA methylation and the regulation of gene transcription. Cell. Mol. Life Sci. 59, 241–257 (2002).

    Article  CAS  Google Scholar 

  28. Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400–5413 (2002).

    Article  CAS  Google Scholar 

  29. Fitzpatrick, D.R. & Wilson, C.B. Methylation and demethylation in the regulation of genes, cells, and responses in the immune system. Clin. Immunol. 109, 37–45 (2003).

    Article  CAS  Google Scholar 

  30. Bruniquel, D. & Schwartz, R.H. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 4, 235–240 (2003).

    Article  CAS  Google Scholar 

  31. Tolhuis, B. et al. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  Google Scholar 

  32. Palstra, R.J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

    Article  CAS  Google Scholar 

  33. Carter, D. et al. Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626 (2002).

    Article  CAS  Google Scholar 

  34. Patrinos, G.P. et al. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 18, 1495–1509 (2004).

    Article  CAS  Google Scholar 

  35. Epner, E. et al. The β-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse β-globin locus. Mol. Cell 2, 447–455 (1998).

    Article  CAS  Google Scholar 

  36. Reik, A. et al. The locus control region is necessary for gene expression in the human β-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Mol. Cell. Biol. 18, 5992–6000 (1998).

    Article  CAS  Google Scholar 

  37. Bender, M.A., Bulger, M., Close, J. & Groudine, M. β-Globin gene switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region. Mol. Cell 5, 387–393 (2000).

    Article  CAS  Google Scholar 

  38. Reiner, S.L., Zheng, S., Corry, D.B. & Locksley, R.M. Constructing polycompetitor cDNAs for quantitative PCR. J. Immunol. Methods 165, 37–46 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Evangelisti, C. Hughes and J. Stein for assisting with the generation of RHS7-deficient mice; P.E. Fields, S.T. Kim and E. Eynon for discussion; and F. Manzo for help with manuscript preparation. Supported by the National Institutes of Health (HL56389 to R.A.F.), Cancer Research Institute (C.S.) and Howard Hughes Medical Institute (R.A.F.). R.A.F. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A Flavell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, G., Spilianakis, C. & Flavell, R. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nat Immunol 6, 42–48 (2005). https://doi.org/10.1038/ni1148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing