Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exacerbated graft-versus-host disease in Pirb−/− mice

Abstract

Immune responses are often regulated by opposing receptor pairs that recognize the same ligand but deliver either activating or inhibitory signals. Paired immunoglobulin-like receptors (PIRs) expressed on B cells and myeloid cells comprise a major histocompatibility complex class I recognition system that regulates the responsiveness of these cells. Here, activating PIR-A and inhibitory PIR-B bound various mouse major histocompatibility complex class I (H-2) molecules, and in vitro H-2 tetramer stimulation of PIR-B on B cells or PIR-A on macrophages induced intracellular phosphotyrosine signaling. After transfer of allogeneic splenocytes into PIR-B-deficient mice, the mice showed exacerbated graft-versus-host disease, which was due to augmented activation of recipient dendritic cells with concomitant upregulation of PIR-A and increased interferon-γ production. PIR-A-induced dendritic cell activation also led to increased proliferation of donor cytotoxic T cells. Thus, PIR-A and PIR-B are counteracting receptors that are essential for successful tissue transplantation and may regulate irrelevant reaction to autologous tissues in a constitutive way in physiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosensor analyses of the interaction between the rPIR-B ectodomain and MHC class I molecules.
Figure 2: H-2 tetramer binds to PIR-B on splenic B cells and PIR-A on peritoneal macrophages.
Figure 3: PIR-B and PIR-A can initiate tyrosine-based cell signaling after H-2 binding.
Figure 4: Induction of lethal GVHD in Pirb−/− mice.
Figure 5: Activated recipient DCs during GVHD show upregulated expression of PIR-A and PIR-B.

Similar content being viewed by others

References

  1. Kärre, K. NK cells, MHC class I molecules and the missing self. Scand. J. Immunol. 55, 221–228 (2002).

    Article  Google Scholar 

  2. Cerwenka, A. & Lanier, L.L. Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 1, 41–49 (2001).

    Article  CAS  Google Scholar 

  3. Ravetch, J.V. & Lanier, L.L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article  CAS  Google Scholar 

  4. Shlomchik, W.D. et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285, 412–415 (1999).

    Article  CAS  Google Scholar 

  5. Shlomchik, W.D. et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285, 412–415 (1999).

    Article  CAS  Google Scholar 

  6. Heeger, P.S. T-cell allorecognition and transplant rejection: A summary and update. Am. J. Transplant. 3, 525–533 (2003).

    Article  CAS  Google Scholar 

  7. Colonna, M., Nakajima, H., Navarro, F. & Lopez-Botet, M. A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. J. Leukoc. Biol. 66, 375–381 (1999).

    Article  CAS  Google Scholar 

  8. Borges, L. & Cosman, D. LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev. 11, 209–217 (2000).

    Article  CAS  Google Scholar 

  9. Long, E.O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    Article  CAS  Google Scholar 

  10. Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453 (2003).

    Article  CAS  Google Scholar 

  11. Nakajima, H., Samaridis, J., Angman, L. & Colonna, M. Human myeloid cells express an activating ILT receptor (ILT1) that associates with Fc receptor γ-chain. J. Immunol. 162, 5–8 (1999).

    CAS  PubMed  Google Scholar 

  12. Colonna, M. et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J. Exp. Med. 186, 1809–1818 (1997).

    Article  CAS  Google Scholar 

  13. Colonna, M. et al. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J. Immunol. 160, 3096–3100 (1998).

    CAS  PubMed  Google Scholar 

  14. Chang, C.C. et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3, 237–243 (2002).

    Article  CAS  Google Scholar 

  15. Manavalan, J.S. et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl. Immunol. 11, 245–258 (2003).

    Article  CAS  Google Scholar 

  16. Hayami, K. et al. Molecular cloning of a novel murine cell-surface glycoprotein homologous to killer cell inhibitory receptors. J. Biol. Chem. 272, 7320–7327 (1997).

    Article  CAS  Google Scholar 

  17. Kubagawa, H., Burrows, P.D. & Cooper, M.D. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc. Natl. Acad. Sci. USA 94, 5261–5266 (1997).

    Article  CAS  Google Scholar 

  18. Yamashita, Y. et al. Genomic structures and chromosomal location of p91, a novel murine regulatory receptor family. J. Biochem. 123, 358–368 (1998).

    Article  CAS  Google Scholar 

  19. Kubagawa, H. et al. Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J. Exp. Med. 189, 309–318 (1999).

    Article  CAS  Google Scholar 

  20. Kubagawa, H. et al. Paired immunoglobulin-like receptors of activating and inhibitory types. Curr. Top. Microbiol. Immunol. 244, 137–149 (1999).

    CAS  PubMed  Google Scholar 

  21. Takai, T. & Ono, M. Activating and inhibitory nature of the murine paired Ig-like receptor (PIR) family. Immunol. Rev. 181, 215–222 (2001).

    Article  CAS  Google Scholar 

  22. Maeda, A., Kurosaki, M. & Kurosaki, T. Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor γ chain. J. Exp. Med. 188, 991–995 (1998).

    Article  CAS  Google Scholar 

  23. Yamashita, Y., Ono, M. & Takai, T. Inhibitory and stimulatory functions of paired Ig-like receptor (PIR) family in RBL-2H3 cells. J. Immunol. 161, 4042–4047 (1998).

    CAS  PubMed  Google Scholar 

  24. Ono, M., Yuasa, T., Ra, C. & Takai, T. Stimulatory function of paired immunoglobulin-like receptor-A in mast cell line by associating with subunits common to Fc receptors. J. Biol. Chem. 274, 30288–30296 (1999).

    Article  CAS  Google Scholar 

  25. Bléry, M. et al. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc. Natl. Acad. Sci. USA 95, 2446–2451 (1998).

    Article  Google Scholar 

  26. Maeda, A., Kurosaki, M., Ono, M., Takai, T. & Kurosaki, T. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J. Exp. Med. 187, 1355–1360 (1998).

    Article  CAS  Google Scholar 

  27. Ujike, A. et al. Impaired dendritic cell maturation and increased TH2 responses in PIR-B−/− mice. Nat. Immunol. 3, 542–548 (2002).

    Article  CAS  Google Scholar 

  28. Ho, L.H., Uehara, T., Chen, C.C., Kubagawa, H. & Cooper, M.D. Constitutive tyrosine phosphorylation of the inhibitory paired Ig-like receptor PIR-B. Proc. Natl. Acad. Sci. USA 96, 15086–15090 (1999).

    Article  CAS  Google Scholar 

  29. Liang, S., Baibakov, B. & Horuzsko, A. HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur. J. Immunol. 32, 2418–2426 (2002).

    Article  CAS  Google Scholar 

  30. Hogarth, P.M. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr. Opin. Immunol. 14, 798–802 (2002).

    Article  CAS  Google Scholar 

  31. Takai, T. Roles of Fc receptors in autoimmunity. Nat. Rev. Immunol. 8, 580–592 (2002).

    Article  Google Scholar 

  32. Shiroishi, M. et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc. Natl. Acad. Sci. USA 100, 8856–8861 (2003).

    Article  CAS  Google Scholar 

  33. Hart, G., Flaishon, L., Becker-Herman, S. & Shachar, I. Ly49D receptor expressed on immature B cells regulates their IFN-γ secretion, actin polymerization, and homing. J. Immunol. 171, 4630–4638 (2003).

    Article  CAS  Google Scholar 

  34. Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J.V. FcRγ chain deletion results in pleiotrophic effector cell defects. Cell 76, 519–529 (1994).

    Article  CAS  Google Scholar 

  35. Pedersen, A.E., Jacoby, B.F., Skov, S. & Claesson, M.H. MHC class I is functionally associated with antigen receptors in human T and B lymphomas. Cell. Immunol. 173, 295–302 (1996).

    Article  CAS  Google Scholar 

  36. Quelle, F.W. et al. JAK2 associates with the βc chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell. Biol. 14, 4335–4341 (1994).

    Article  CAS  Google Scholar 

  37. Mul, A.L., Wakao, H., O'Farrell, A.M., Harada, N. & Miyajima, A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 14, 1166–1175 (1995).

    Article  Google Scholar 

  38. Blazar, B.R. et al. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-γ-dependent mechanism. J. Immunol. 171, 1272–1277 (2003).

    Article  CAS  Google Scholar 

  39. Cosman, D. et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7, 273–282 (1997).

    Article  CAS  Google Scholar 

  40. Willcox, B.E., Thomas, L.M. & Bjorkman, P.J. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat. Immunol. 4, 913–919 (2003).

    Article  CAS  Google Scholar 

  41. Kogure, T. et al. Effect of interleukin 2 on killer cell inhibitory receptors in patients with rheumatoid arthritis. Ann. Rheum. Dis. 60, 166–169 (2001).

    Article  CAS  Google Scholar 

  42. Dulphy, N. et al. Functional modulation of expanded CD8+ synovial fluid T cells by NK cell receptor expression in HLA-B27-associated reactive arthritis. Int. Immunol. 14, 471–479 (2002).

    Article  CAS  Google Scholar 

  43. Kollnberger, S. et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis. Rheum. 46, 2972–2982 (2002).

    Article  CAS  Google Scholar 

  44. Laferté, S., Loh, L.C. & Keeler, V. Monoclonal antibodies specific for human tumor-associated antigen 90K/Mac-2 binding protein: Tools to examine protein conformation and function. J. Cell. Biochem. 77, 540–559 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Kubagawa and M.D. Cooper for 6C1 hybridoma. Supported by the Core Research for Evolutional Science and Technology program of the Japan Science and Technology Agency; a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Virtual Research Institute of Aging of Nippon Boehringer Ingelheim; and the Center of Excellence program Center for Innovative Therapeutic Development Towards the Conquest of Signal Transduction Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Takai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, A., Kobayashi, E. & Takai, T. Exacerbated graft-versus-host disease in Pirb−/− mice. Nat Immunol 5, 623–629 (2004). https://doi.org/10.1038/ni1074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing