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Polygenic susceptibility to breast cancer
and implications for prevention

Paul D.P. Pharoah!2, Antonis Antoniou?, Martin Bobrow*, Ron L. Zimmern?, Douglas F. Easton?
& Bruce A.]. Ponder!

Published online: 4 March 2002, DOI: 10.1038/ng853

The knowledge of human genetic variation that will come from the human genome sequence makes feasible a poly-
genic approach to disease prevention, in which it will be possible to identify individuals as susceptible by their geno-
type profile and to prevent disease by targeting interventions to those at risk. There is doubt, however, regarding the
magnitude of these genetic effects and thus the potential to apply them to either individuals or populations. We have
therefore examined the potential for prediction of risk based on common genetic variation using data from a popula-
tion-based series of individuals with breast cancer. The data are compatible with a log-normal distribution of genetic
risk in the population that is sufficiently wide to provide useful discrimination of high- and low-risk groups. Assuming
all of the susceptibility genes could be identified, the half of the population at highest risk would account for 88% of
all affected individuals. By contrast, if currently identified risk factors for breast cancer were used to stratify the popu-
lation, the half of the population at highest risk would account for only 62% of all cases. These results suggest that
the construction and use of genetic-risk profiles may provide significant improvements in the efficacy of population-

based programs of intervention for cancers and other diseases.

Introduction

The human genome sequence is the starting point for the compila-
tion of detailed information about the range of genetic differences
among individuals. Whereas current approaches to the genetics of
disease are based primarily on mendelian inheritance of single but
uncommon predisposing genes, knowledge of the range of genetic
variation across many loci in the population will allow a polygenic
approach in which risks will be estimated from the combined effect
of this variation. The prospect of a polygenic approach to common
diseases has generated much attention. Some have claimed-? that
greater understanding of genetic risk factors and their interactions
with the environment will allow diseases to be predicted and to be
prevented at both individual and population levels, by directing
interventions at individuals shown to be at high risk. Others are less
sure’5; in particular, they question whether molecular testing for
common genetic variants can have sufficient predictive power to be
of practical use either for the individual or for defining risk groups
in the population at large.

We therefore examined the potential for prediction of risk based
on common genetic variation and compared this with the predic-
tions that could be made using established risk factors. We
addressed three questions: (i) What is the likely distribution of
genetically determined risk in the population? (ii) What is the dis-
tribution of risk described by established risk factors? (iii) What are
the implications of these risk distributions for effective targeting of
intervention to individuals and within the population? We used
breast cancer as a model to explore these questions.

Results

Distribution of genetic risk in population

Breast cancer, like other common cancers, shows familial cluster-
ing. Depending on age, the risk is typically increased by two- to
threefold in first-degree relatives of an affected individual. Twin
studies suggest that most of this familial aggregation results from
inherited susceptibility®’. The known predisposing genes for
breast cancer, including BRCAI and BRCA2, account for only
20-25% of this effect®. The number and properties of the genes
that account for the remainder are unknown.

To investigate genetic models that best account for the familial
aggregation of breast cancer not due to BRCAI and BRCA2, we
analyzed the occurrence of breast cancer in the relatives of
affected individuals in the Anglian Breast Cancer Study, a popu-
lation-based series of 1,484 affected individuals, all of whom
were screened for mutations in BRCA1/2 (refs 9,10). Two mod-
els were found to fit the data well. The one best describing these
data was a polygenic model in which susceptibility to breast can-
cer is conferred by a large number of alleles. The risk associated
with any individual allele is small, but as the effects are multi-
plicative, a woman with several susceptibility alleles is at high
risk. The model also fits well the pattern of breast cancer not due
to BRCA mutations!! in a series of multiple-case families. It is
probably an appropriate model for many common cancers and
other diseases. The second model was that of a single common
recessive allele (frequency 0.24). This model fit the population-
based data well, but the fit for the multiple-case families was not
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as good. The risk allele was estimated to confer a relative risk of
21 for rare homozygotes compared with common homozygotes
and heterozygotes, corresponding to a moderately high pene-
trance of 42%.

Let us assume that one dominant susceptibility allele has been
identified, and half the population carry the high risk allele. If
‘high-risk’ individuals have a breast cancer relative risk of 3 com-
pared with ‘low-risk’ individuals, the high-risk group will have a
relative risk of 1.5, and the low risk group will have a relative risk of
0.5 (1.5=3 % 0.5), giving an average relative risk of 1 for the popula-
tion. Absolute risks of breast cancer will depend on underlying inci-
dence rates. Using rates typical of northern Europe and the United
States, the absolute risk of breast cancer by age 70 in the two risk
groups is 2.9% and 8.4%, corresponding to an average population
risk of 5.7% (ref. 12). It thus follows that 75% of all breast cancer
cases will occur in high-risk women and 25% in low-risk women.
An intervention targeted to high-risk women thus has the potential
to reduce breast cancer morbidity by a maximum of 75%. Now let
us assume there are two such susceptibility genes, each present in
half the population and each conferring the same risks, which
interact in a multiplicative manner. There will now be three risk
groups in the population: one-quarter of the population will have
no high-risk alleles and a relative risk of 0.25 (0.5 x 0.5), half the
population will have one high-risk allele (relative risk of 0.75) and
one-quarter of the population will have two high-risk alleles (rela-
tive risk of 2.25). The risk of breast cancer by age 70 in these three
groups is 1.5%, 4.3% and 12.3%, respectively; the groups account
for 8%, 23% and 69%, respectively, of all breast cancer cases. As the
number of susceptibility genes increases, the number of risk groups
will increase and risk in the population tends towards a continuous
distribution. For example, with five susceptibility alleles, each con-
ferring a different relative risk, there will be 32 different risk groups.

Under our polygenic model, the (continuous) distribution of
risk in the population is predicted to be log-normal; that is, the
logarithm of risk for all individuals in the population will fol-
low a normal distribution (Fig. 1). A normal distribution is
defined by its mean value and its standard deviation. In our
analysis, the standard deviation of the log-normal distribution
of genetic risk was estimated to be 1.2 (ref. 10). Once the stan-
dard deviation is defined, the mean of the distribution is set so
that the arithmetical average risk (termed R in equations) is
equal to 1 (see Methods). The standard deviation describes the
variation in risks that can be defined within the population and
thus is the key indicator of the power to discriminate individu-
als in groups at low or high risk.

Fig. 2 Proportion of population above a specified absolute risk of breast cancer
and proportion of cases occurring in that fraction of the population. Fifty per-
cent of the population have a risk of breast cancer greater than 3% by age 70,
and 88% of all breast cancers occur in this half of the population. Half of all
cases occur in the 12% of the population with an 11% or greater risk of breast
cancer by age 70.
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Fig. 1 Distribution of breast cancer risk in the population and in individual
cases. Risks are shown on a log scale; the arithmetical average risk for the
entire population has been set at 1.0 (see Methods). The risk distribution in
individuals who will develop breast cancer (cases) is shifted to the right. The
standard deviation describes the spread of risk between high and low values
within the population, and thus the potential to discriminate different levels in
different individuals.

It can be shown that the distribution of (initial) risk among
affected individuals is also log-normal and has a simple relation-
ship to the distribution of risk in the population (see Methods).
The standard deviation of the log-normal distribution in indi-
vidual cases is the same as in the population, but the average risk
is higher (Fig. 1). (A complication occurs, because at older ages
the distribution of risk in both the general population and
among individual cases changes, as higher-risk individuals are
more likely to have been ‘eliminated’. We have allowed for this
tendency and estimated the distribution of risk in individual
cases as a whole averaged over all ages.)

The distribution of genetic risk in the population, for a stan-
dard deviation of 1.2, is shown in Fig. 1. The area under the curve
gives the proportion of the population in any risk group. The risk
to the highest quintile of the distribution is 40-fold higher than
that of the lowest quintile. Also shown is the risk distribution in
affected individuals according to their initial level of risk; that is,
the risk distribution of women in the population who will subse-
quently develop breast cancer.

The proportion of the population that have a risk greater than
a given level, and the proportion of cases that will occur within
this high-risk subgroup, provide more useful information. These
figures are obtained from the area under the population and case
curves (Fig. 1) to the right of any given risk cut-off. Thus, for a
standard deviation of 1.2, half the population have a relative risk
of 0.46 or higher; this half of the population accounts for 88% of
all individuals with breast cancer. Figure 2 shows the proportion
of the population that have a risk above a given level and the pro-
portion of cases above the same level of risk, where the risks have
been converted to risk of breast cancer by age 70. From these
curves, it can be seen that the 12% of the population at highest
risk account for 50% of affected individuals. Another way of
depicting these data is to plot the proportion of cases that occur
in women above a given level of risk against the proportion of the
population above that level of risk (Fig. 3).

Under the recessive model, there would be a single risk allele
with a frequency of 0.24. Women with the at-risk genotype
(RR=9.8) would thus comprise 5.8% of the population and
account for 56% of cases. The remaining 94.2% of the popula-
tion (RR=0.46) would account for 44% of cases. In light of the
failure of genetic linkage studies to identify further breast cancer
susceptibility genes, however, such a model seems less plausible
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Fig. 3 Proportion of cases accounted for by a given proportion of the popula-
tion above a specified risk according to the standard deviation of underlying
risk distribution. The 12% of the population with the highest risk account for
half of all cases if s.d.=1.2, whereas for 5.d.=0.3, 38% of population account for
half the cases.

Distribution of risk due to established risk factors

Several risk factors that do not require molecular genotyping
(although they may in part have a genetic basis) are already used
to stratify individuals into high- and low-risk groups for breast
cancer. We have used data on 3,209 individuals with breast can-
cer, from the same population-based study that we used for the
genetic risk estimates, to estimate the risk distribution for breast
cancer in pre-menopausal women that is provided by these
established risk factors!®. We included age at menarche (under 13
years versus 13 years and older), number of full-term pregnan-
cies, age at first full-term pregnancy, oral contraception use (cur-
rent, past, never) and family history. The relative risk associated
with each factor was assumed to act independently, with several
risk factors interacting multiplicatively. The distribution of rela-
tive risk in the affected individuals was found to be approxi-
mately log-normally distributed, with a standard deviation of
0.3. It follows that the distribution of risk in the population
determined by these risk factors should also be log-normal, with
the same standard deviation. The width of this distribution cor-
responds to a 3.5-fold difference in risk between the highest
quintile to the lowest, but it is considerably narrower than the
distribution, with a standard deviation of 1.2 predicted for
genetic risk factors.

In practice, the estimated power of the genetic risk distribution
is an upper limit, because some disease-associated genes may
prove difficult to detect; this will reduce the width of the distrib-
ution and thus the predictive value. We therefore recalculated the
model assuming that genes responsible for half the variation in
genetic risk could be identified. The risk to the highest quintile of
the distribution is now 12-fold higher than that of the lowest
quintile (Table 1). The discriminatory power of the distribution
based on established risk factors with a standard deviation of 0.3
is also compared with that of risk factors with a standard devia-
tion of 1.2 (Fig 3).

Discussion

The validity of our results depends on the validity of the segrega-
tion analysis'?, a detailed critique of which is beyond the scope of
this paper. The only other segregation analysis that has taken into
account the contribution of BRCAI and BRCA2 to familial
aggregation found evidence of a single high-penetrance recessive
gene!®, We found that a recessive model fit the population-based
data well'%, but the fit for the multiple-case families was not as
good!!. In addition, a recent meta-analysis found that the famil-
ial risk of breast cancer to siblings is similar to that to mothers,
suggesting that any recessive component is at best small.
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Thus, the possibility that genetic susceptibility to breast cancer is
due to several loci, each conferring a modest independent risk,
seems reasonable. In practice, the number of loci involved will be
finite, but once there are more than four to five loci the distribution
of risk will be similar to that of the polygenic model, except at the
extreme tails. A key aspect of the model is standard deviation, as
this determines the power of the risk distribution to discriminate
high- and low-risk individuals. The estimate of standard deviation
is specified by the segregation analysis and is also close to that pre-
dicted by other studies of familial risk. Assuming the relative risk of
breast cancer in siblings to be equal to 217, the predicted standard
deviation of the (log) genetic risk distribution is also 1.2 (see Meth-
ods). The familial relative risk for many other common cancers is
also around 2, which suggests that the distribution of risk for these
cancers will be similar to that which we observed for breast cancer.
The potential benefits of an approach targeted to high-risk disease
prevention are thus also likely to be similar.

The assumption that the putative polygenes act in a multiplica-
tive manner may not be correct. It has been argued, on the basis of
the ratio of risks to monozygotic and dizygotic twins of cancer
cases, that an additive model provides the best fit for most common
cancers, including breast cancer'“. The effect of an additive model
would be to reduce the standard deviation of the risk distribution
from 1.2 to 1.05, reducing slightly the predictive power of genetic
testing. By contrast, a recent analysis of twin data reported by Peto
and Mack’ found a very high incidence in the monozygotic twin of
affected individuals, more consistent with a muliplicative model,
and concluded that a high proportion, and perhaps the majority, of
breast cancers arise in a susceptible minority of women. If this were
true, the discriminatory power could be substantially improved.

The practical use of risk information has previously been consid-
ered in two contexts: that of the individual, and that of the popula-
tion'8, In both cases, our analysis suggests that a risk profile that is
based on the combination of known genotype and other risk fac-
tors is likely to provide risk discrimination that has practical value
for health care. Whether genetic testing in whole populations
would be socially or economically acceptable remains unknown,
and will probably depend on whether useful action can be seen to
result. But it does seem clear that using combinations of risk factors
may overcome many of the limitations of using single risk factors,
which has caused skepticism regarding
the usefulness of molecular genotyping

Table 1 « Summary of key results

for common, low-risk genes*.

Standard Relative Cumulative

% of population

deviation  risk® riskP
50
Non-genetic factors 0.30 0.91 7.3% 62
Genetic factors 50% genes  0.84 0.67 3.8% 80
100% genes  1.20 0.46 2.7% 88

Proportion of cases occurring in given
proportion of population at highest risk

For example, with respect to indi-
vidual risk, a single gene that conferred
a relative risk of breast cancer of 1.5-

20 10 fold (the size of effect that seems plau-
28 15 sible from reported studies!®) would
5 - increase the risk of breast cancer by age
63 w 70 from 5.7% to 85% for an individual

aModal value for relative risk distribution. °Modal value for cumulative risk by age 70.

from the UK. By contrast, a genotypic
risk profile might identify one woman
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in 30 who has a risk by age 70 of 20% or more (Fig. 2). Little is
known about how individuals will perceive and respond to
such risks, but the discriminatory power of the polygenic risk
profile is clear.

At the population level, the effects are even more striking.
Under the genetic model, 12% of the population have a risk of
breast cancer of 1 in 10 or more by age 70, and half the total
breast cancer incidence falls within that 12% of the population
(Fig. 2). Different cut-offs can be chosen, to suit a specific pur-
pose, to give the best combination of high risk and proportion of
total breast cancer incidence that is included within the high-risk
group. A single genotypic marker would, by contrast, provide far
weaker discrimination; for example, a dominant predisposing
allele with frequency 10% and relative risk of 1.5 would result in
26% of cancer incidence occurring in the 19% of the population
who carried at least one allele—very poor enrichment, in terms
of targeting interventions. An important feature of the high-risk
groups defined by the model is that most of the individuals
within them will be at risk because of the combined effect of sev-
eral predisposing alleles. This implies that interventions that are
based on specific mechanisms of predisposition will individually
deal with only a proportion of the excess cancer risk, and that
except for predisposing genes with major effects, generic inter-
ventions are more likely to be appropriate.

Risk profiles may also be used to define low-risk groups. Only
12% of breast cancer incidence falls within the 50% of women at
lowest risk (Fig. 2). Exclusion of low-risk groups from interven-
tions, if it were socially acceptable, might be cost-effective. For
example, screening of the whole population by mammography
should reduce breast cancer mortality by approximately 30%
(ref. 20). If mammography were offered only to the half of the
population in the highest-risk group (per the genetic profile),
total mortality from breast cancer would still be reduced by
26%—a ‘loss’ of only 4%. There would be additional benefits, as
the benefit:harm ratio is likely to be improved by targeting to the
high-risk group. (These arguments assume that the efficacy of
any intervention is independent of genotype; if that is not the
case, the benefit of genotyping may be greater or smaller,
depending on whether the cancers in high-risk individuals are
more or less responsive to the intervention).

These arguments and examples assume that all of the genetic fac-
tors that contribute to the estimated risk distribution can be identi-
fied and typed. In practice, this goal is some way off. Nevertheless,
the results (Table 1) suggest that even if only half the risk factors
were typed, useful discrimination of risk might be possible. Our
findings also suggest that the power of risk profiles based solely on
the currently available ‘classical’ risk factors is quite weak, and that,
in the future, genotypic data may have a decisive role.

Methods

Equations. Under the polygenic model, the distribution of risk (R) in the
population at birth is log-normal. The distribution is defined by the mean
value (u) and its standard deviation (o). The parameter i is an arbitrary
constant; in our examples we set {I=—0?/2 so that the arithmetical average
population risk (R) is equal to 1.

The distribution of risk among cases of the disease at young ages is also
log-normal and has a simple relationship to the distribution of risk in the
population (¢ and o).

For a log-normally distributed risk R in the population,

logR=Y~N(11,6%)

that is, the density of Y, the logarithm of the risk, is given by:
1

= exp(-(y=)*/20%)

oV 2n
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As risk of disease is proportional to R (= €Y), the distribution of risk (on
the y scale) in cases is given by:

4

1 2 2
—(y—n)°/2
oV an SPCO-aI2e)

1
8= =5 eRH )-o%’120%)

1 vV 2 2
—(v=p)*12
o ,‘e exp(-(v—w)°/2 o7)dv

This is also a normal distribution with parameters (,u+62,c72). Thus, the
risk distribution in the cases has the same shape as in the general popula-
tion, but shifted (on a log-scale) by o*.

The RR of disease in monozygotic twins (Aonozygotic) and siblings
(Asibling) are related to each other and to the predicted s.d. of the poly-
genic log-normal risk distribution by the equation:

A =22

‘monozygotic sibling
Assuming Agjing to be equal to 2, as estimated by many observational epi-
demiologic studies!’, this equation solves to predict an s.d. of 1.2.
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