

## NIH Public Access

**Author Manuscript** 

Nat Genet. Author manuscript; available in PMC 2006 October 5.

Published in final edited form as: *Nat Genet.* 2006 June ; 38(6): 711–715.

# The *PHYTOCHROME* C photoreceptor gene mediates natural variation in flowering and growth responses of *Arabidopsis thaliana*

Sureshkumar Balasubramanian<sup>1,†</sup>, Sridevi Sureshkumar<sup>1,†</sup>, Mitesh Agrawal<sup>1</sup>, Todd P. Michael<sup>2,3</sup>, Carrie Wessinger<sup>4</sup>, Julin N. Maloof<sup>4</sup>, Richard Clark<sup>1</sup>, Norman Warthmann<sup>1</sup>, Joanne Chory<sup>2,3</sup>, and Detlef Weigel<sup>1,2</sup>

1 Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany.

2 Plant Biology Laboratory, and

3 Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

4 Section of Plant Biology, University of California, Davis, CA 95616, USA.

### Abstract

Light plays an important role in modulating seedling growth and flowering time<sup>1</sup>. We show that allelic variation at the *PHYTOCHROME C (PHYC)* photoreceptor locus affects both traits in natural populations *of A. thaliana*. Two functionally distinct *PHYC* haplotype groups are distributed in a *FRIGIDA*-dependent latitudinal cline that is stronger than the one reported for *FLOWERING LOCUS C*, which together with *FRIGIDA* explains a large portion of the variation in *A. thaliana* flowering time<sup>2</sup>. In a genome-wide scan for association of 65 loci with latitude, there was an excess of significant *p*-values, indicative of population structure. Nevertheless, *PHYC* was the most strongly associated locus across 163 strains, suggesting that *PHYC* alleles are under diversifying selection in *A. thaliana*. Our work, together with previous findings<sup>3–6</sup>, suggests that photoreceptor genes are major agents of natural variation in plant flowering and growth response.

*Arabidopsis thaliana* occurs across a wide range of latitudes in the northern hemisphere, and wild strains display vary extensively in light sensitivity and flowering responses. *FRI* and *FLC*, which mediate the effects of exposure to winter-like temperatures (vernalization), account for about 23% of the phenotypic variation in flowering time of *A. thaliana* in short days<sup>7–9</sup>. In contrast to *FRI*, alleles of other loci that modulate variant flowering responses tend to be rare<sup>3–5,10</sup>. In addition, most of the characterized natural alleles affect either seedling growth or flowering time, even though both traits are light dependent. Linkage disequilibrium mapping studies suggest that common allelic variation at the *CRYPTOCHROME2* (*CRY2*) photoreceptor locus is associated with flowering time variation, but this has not yet been experimentally verified<sup>6</sup>.

We have recently identified an accession from Frankfurt, Germany, Fr-2, which responds only weakly to a change in photoperiods. Compared to standard laboratory strains such as Col-0, Fr-2 flowers early in short days. This phenotype shows simple segregation in an F<sub>2</sub> population derived from a cross of Fr-2 to Col-0<sup>8</sup>. By performing whole-genome scans of 140 early flowering individuals selected from 900 F<sub>2</sub> plants, we mapped the earliness to a 1 Mb region on chromosome 5 (Supplementary Fig. 1 online). Within this interval, we found 11 genes that

Correspondence should be addressed to DW (weigel@weigelworld.org)..

<sup>&</sup>lt;sup>†</sup>These authors contributed equally to the work.

were differentially expressed between Col and Fr-2 (Fig. 1a), as deduced from AtGenExpress microarray data of 34 wild strains<sup>8</sup>. Because none of the other strains showed an Fr-2 like flowering behavior, and because the early flowering phenotype was recessive, we asked whether any of the 11 genes was specifically underexpressed in Fr-2. Only one gene, which encodes the red-light receptor PHYC, fulfilled this criterion (Fig. 1b).

*PHYC* knockout alleles not only cause early flowering in short days, but also confer reduced sensitivity to red light during seedling growth<sup>11,12</sup>. Consistent with a defect in *PHYC*, Fr-2 seedlings responded to red light across a range of fluences less strongly than Col-0 seedlings, similar to plants with a mutation in the canonical red-light receptor *PHYB* (Fig.1c). In an F<sub>1</sub>, Fr-2 alleles complemented the flowering phenotypes of *phyA* and *phyB* mutants induced in the L*er* background, indicating that *PHYA* and *PHYB* alleles of Fr-2 are functional (not shown). In contrast, Fr-2 failed to complement the flowering phenotype of a *phyC* knockout allele in Col-0, confirming that the early flowering of Fr-2 is largely due to a defect in *PHYC* (Fig. 1d).

Sequencing of a *PHYC* cDNA from Fr-2 revealed a nonsense change in the first exon, which converts the K299 codon to a stop codon. The predicted Fr-2 PHYC protein therefore lacks half of the GAF domain, and the entire PHY, PAS and histidine kinase domains, all of which are typically required for phytochrome function. Premature stop codons can trigger non-sense mediated mRNA decay<sup>13</sup>, which may explain the reduced levels of *PHYC* mRNA detected on microarrays<sup>14</sup>.

In addition to the stop codon, the Fr-2 *PHYC* allele is highly polymorphic with 12 nonsynonymous changes compared to Col-0. Ten of these substitutions are present in another common laboratory strain,  $Ler^{15}$ . Many screens for seedlings with reduced light responses have been carried out in the *Ler* background, but *phyC* alleles were never recovered, suggesting that the *Ler PHYC* allele may have limited activity. Earlier overexpression studies of *PHYC* are in agreement with this hypothesis. Overexpression of Col-0 *PHYC* in *Arabidopsis* resulted in reduced hypocotyl length under red light. In contrast, while overexpression of *Ler PHYB* in transgenic tobacco plants also lead to shorter hypocotyls, *Ler PHYC* had no effect on hypocotyl length in red light<sup>16,17</sup>.

If the Ler PHYC allele is less active than that of Col-0, PHYC should at least partially explain the earlier flowering of Ler in short days. Indeed, a quantitative trait locus (QTL) that maps to the PHYC region has been detected in Ler x Col recombinant inbred lines (RILs) grown under natural conditions in fall, when days are short<sup>18</sup>. Consistent with a similar genetic basis of early flowering under short days in Fr-2 and Ler, a Ler x Fr-2 F<sub>2</sub> population showed a near normal distribution of flowering time in short days, which contrasts with the behavior of a Col-0 x Fr-2 F<sub>2</sub> population (Supplementary Fig. 2a online). Genotyping of F<sub>2</sub> populations derived from Fr-2 x Col or Fr-2 x Ler revealed that the average flowering time of plants that carry Col-0 PHYC was much higher than that of plants with Fr-2 or Ler alleles (Supplementary Fig. 2b online). Furthermore, the PHYC allele of Ler failed to fully complement the phyC knockout in the Col-0 background. Fr-2 x Ler F<sub>1</sub> plants flowered early in short days, in agreement with the limited activity of Ler PHYC (Supplementary Fig. 2c online). Finally, quantitative complementation analyses showed that phenotypic differences due to allelic variation between Fr-2 and Ler PHYC were less than those observed between Col-0 and either Fr-2 or Ler (Fig. 2).

Since both the sequence of *PHYC* in Col, L*er*, and Fr-2 and the genetic data suggested functionally distinct *PHYC* alleles, we studied the haplotype structure at the *PHYC* locus in more detail. We sequenced *PHYC* from a randomly chosen sample of 29 wild strains. Phylogenetic analysis, using the sister species *A. lyrata* as outgroup, indicated two major haplotype classes, with L*er* in one class and Col-0 in the other (Fig. 3). A total of 40 SNPs that

result in eight informative amino acid changes were in complete linkage disequilibrium among the two haplotype groups (Fig 3). In addition, the two haplotype groups were distinguished by an indel 500 bp upstream of the start codon.

Mapping experiments have detected QTL for flowering time and hypocotyl length in many RIL populations across multiple environments. Haplotype analysis on multiple crosses has been previously used to identify candidate genes for a QTL<sup>19</sup>. In a reverse approach, we predicted that if the two *PHYC* haplotypes are distinguished by their activity, variation in flowering time and hypocotyl length should map to *PHYC* in crosses derived from parental lines with contrasting haplotypes. Using the promoter indel as a diagnostic marker for the two haplotype groups, we assessed the *PHYC* haplotype of more than 220 Eurasian strains (Supplementary Table 1 online), and then examined published QTL maps from six different crosses for flowering time and hypocotyl length<sup>10,18,20–24</sup>. As predicted, only populations in which the parents carried different haplotypes at *PHYC* showed a QTL near *PHYC* (Table 1). The direction of the QTL effect in all crosses was consistent with the Ler-like haplotype being less active than the Col-like haplotype. In agreement with the known function of *PHYC*, the QTL depend on the environment, with the light sensitivity QTL being detected under red light and the flowering time QTL in short days.

We also asked whether *PHYC* haplotype groups could account for variation in hypocotyl lengths of 115 wild strains, which we had previously analyzed in several different light conditions<sup>5</sup>. We found that *PHYC* could explain 8% of the variation in white light, and that *PHYC* was significantly associated with hypocotyl lengths across several conditions (Table 2). All these results support the hypothesis that *PHYC* is responsible for the flowering time and hypocotyl length QTL that have been reported in this genomic region. We note, however, that a tightly linked locus could contribute to these results.

That the less active *PHYC* haplotype group is quite common suggests that variation at this locus may be adaptive in the wild. We therefore asked whether the frequency of *PHYC* haplotypes varies with latitude, since co-variation with environmental factors can be evidence of adaptation<sup>25</sup>. Latitudinal clines in light sensitivity and flowering time are known in A. *thaliana*<sup>5,8,26</sup>. Indeed, we found that the more active Col-0 *PHYC* haplotype group was more frequent at northern latitudes (p = 0.0001, n = 221). This is particularly striking among strains that do not carry obvious lesions in FRI (Fig. 4a). In addition, the contribution of PHYC to flowering time is latitude-dependent. A PHYC x latitude interaction can explain 10% of the residual variation in short day flowering, after accounting for effects of FRI, suggesting that PHYC partially contributes to the late flowering of FRI positive strains at northern latitudes (Supplementary Table 2 online). Since latitudinal associations could also be due to population structure, we asked how often significant interaction terms were observed in 163 strains for a set of 65 SNPs that have comparable allele frequencies and that are spaced throughout the genome  $2^{7}$ . The same analysis was carried out for *FLC*, which has been reported to show a FRI-dependent latitudinal cline independent of population structure<sup>28</sup>. The p-values for the association of PHYC ranked first for latitude (Fig. 4b) and fourth for the FRI-dependent interaction with latitude (Fig. 4c). In addition, it always ranked ahead of the corresponding pvalues for FLC. PHYC was also the highest ranking marker for association with hypocotyl length after gibberellin treatment<sup>5</sup> (Supplementary Table 3 online). While there is an excess of significant p-values among the random loci, which is consistent with the effect of population structure, the relative ranks of the *PHYC* p-values are suggestive of adaptive selection<sup>29</sup> (Supplementary Table 3 online). A similar analysis with an independent set of 69 SNP markers, even with a much smaller sample size of 56 strains, yielded comparable results (Supplementary Table 4 online).

Of the informative SNPs that distinguish the *PHYC* haplotype groups, 20 Col-0 SNPs are shared with *A. lyrata*, as are 20 Ler-SNPs. Of the 8 amino acid changes that characterize the Col-0 and Ler haplotypes, four are clustered in a small region that seems to have regulatory activity in both PHYA and PHYB<sup>30,31</sup>. These changes could in principle be responsible for the functional difference between the haplotypes, although both specify unique amino acids at positions that are conserved in other phytochromes, not only in *Arabidopsis*, but also in land plants in general.

*PHYC* appears to have arisen by duplication of *PHYA*, which encodes a far-red light receptor. *phyC* knock out alleles in Col-0 and Ws backgrounds have phenotypes mostly in red and blue light<sup>11,12</sup>, but we found phenotypic associations even in far-red light. Our results could indicate differential cross talk among photoreceptors, dependent on *PHYC* haplotype. Alternatively, our understanding of *phyC* mediated light perception may have been limited by having only knock out alleles in Col-0 and Ws, which share the same haplotype.

While *PHYC* is mostly far-red sensing in rice, in *Arabidopsis* it is functionally more similar to the red-light sensing *PHYB*<sup>11,12,32,33</sup>. Nevertheless, loss of *PHYC* has similar consequences in *Arabidopsis* and rice, namely early flowering under non-inductive conditions<sup>12,33</sup>. This suggests that the functional divergence of *PHYC* from *PHYA* varies in different taxa. Consistent with this idea, *PHYA* evolves faster than *PHYC* in some species, but *PHYC* sequences are more divergent than those of other phytochrome genes in *Arabidopsis*, tomato and sorghum<sup>34–36</sup>. *PHYC* has even been suggested as a target for adaptive evolution in sorghum<sup>35</sup>. In *Arabidopsis*, allelic variation with demonstrated functional effects appears to be more pervasive at *PHYC* than at other photoreceptor loci<sup>3–5</sup>. The functional role of allelic variation at *PHYC* in other species is therefore an important question for future research.

#### **Materials and Methods**

#### Plant material and phenotyping

Seed stocks and growth conditions have been described<sup>8</sup>. *phyC* insertion lines were obtained from the Nottingham Arabidopsis Stock Centre. Typically, 120 F<sub>2</sub> plants were used to analyze flowering time, as measured by counting total leaf number on the main shoot. For complementation studies, 30-50 F<sub>1</sub> plants each were examined. For hypocotyl length measurements, about 20 seeds were stratified on Murashige-Skoog medium for four days at 4°C in dark, and then transferred to growth chambers at 23°C. A week later, plants were flattened and imaged on a flatbed scanner. Hypocotyls lengths were measured using NIH Image.

#### **DNA Analyses**

Genomic DNA was amplified with Pfu polymerase (Fermentas), and products pooled from two to four independent reactions were directly sequenced. See Supplementary Table 5 online for oligonucleotide primers. A 4.9 kb region covering the promoter and almost the entire coding region was obtained from 26 *A. thaliana* strains, the same fragment without the 1.5 kb promoter from three *A. thaliana* and one *A. lyrata* strain (GenBank accession numbers XXXX-XXXX).

#### **Phylogenetic Analysis**

Sequences were aligned using Seqman (DNA Lasergene Inc, USA) and alignment was verified manually. Diversity measurements were obtained with DnaSP v4.10

(http://www.ub.es/dnasp)<sup>37</sup>. Sequence alignments were imported into PAUP<sup>38</sup> and a heuristic search with maximum likelihood was performed using the settings for HKY model specified through Modeltest<sup>39</sup>. A maximum parsimony search was performed with ACCTRAN character state optimization. In both methods, initial trees were generated through step-wise

addition. TBR branch swapping option was used. 1000 bootstrap permutations were performed using the same search settings used for parsimony search with the full heuristic search option in PAUP. Parsimony and maximum likelihood resulted in similar trees. The maximum parsimony tree is shown in Fig. 3. The same split in the tree was obtained when using coding or non-coding regions.

#### **Statistical Analyses**

Data were analyzed using JMP (version 5.1, SAS Institute), Excel (Microsoft) or R (http://www.r-project.org). For the latitudinal association studies, only Eurasian strains were used. The larger set made use of SNP genotyping information published in ref.<sup>27</sup>. Information on the independent SNPs used in the second, smaller analysis is available at http://naturalvariation.org. A nominal logistic regression model with genotype as the response and latitude as a factor was used to compute p-values for latitudinal cline. For testing the interaction with FRI, a simple linear regression model with latitude as the response, and FRI and the genotype of *PHYC* or a random SNP as interaction term was used. The intrinsic multiple testing problem associated when comparing PHYC with random SNPs is somewhat mitigated by the fact that of 43 SNPs in PHYC, 40 are fixed in the two haplotype groups. For association with flowering time, residuals on regression with flowering time as the response and FRI functionality as a factor, were regressed using PHYC haplotype group and latitude as factors with interaction. PHYC x latitude interaction accounted for about 10% of the variation in the residuals. For association with hypocotyl length, a single factor ANOVA was performed with *PHYC* haplotype group as the factor and hypocotyl lengths as response. Previously published flowering time and hypocotyls length measurements were used for association studies<sup>5,8</sup>.

#### Acknowledgements

We thank the Nottingham Arabidopsis Stock Center for seed stocks of SALK T-DNA lines donated by Joe Ecker and colleagues. We thank Christa Lanz for help with sequencing, and Kirsten Bomblies and Ya Long Guo for help with phylogenetic analysis. We thank Kirsten Bomblies, Vava Grbic, Yasushi Kobayashi, Janne Lempe and Stephen Russell for discussion and critical reading of the manuscript, and the anonymous reviewers for insightful comments that led to improvements of the manuscript. Supported by an EMBO Long-Term Fellowship to S.B., an NIH Postdoctoral Fellowship to T.P.M., an NIH grant (GM62932) to J.C. and D.W., and by the Max Planck Society, of which D.W. is a director. J.C. is an HHMI Investigator.

S.B., J.C and D.W. conceived the experiments; S.B., S.S., M.A., T.P.M., C.W, and J.N.M performed the experiments; S.B., S.S., J.N.M., R.C., N.W., J.C and D.W. analyzed the data and wrote the manuscript.

#### References

- Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annu Rev Genet 2004;38:87–117. [PubMed: 15568973]
- 2. Johanson U, et al. Molecular analysis of *FRIGIDA*, a major determinant of natural variation in *Arabidopsis* flowering time. Science 2000;290:344–347. [PubMed: 11030654]
- Aukerman MJ, Amasino RM. Molecular genetic analysis of flowering time in *Arabidopsis*. Sem Cell Dev Biol 1996;7:427–433.
- 4. El-Assal SED, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. A QTL for flowering time in *Arabidopsis* reveals a novel allele of *CRY2*. Nat Genet 2001;29:435–40. [PubMed: 11726930]
- 5. Maloof JN, et al. Natural variation in light sensitivity of *Arabidopsis*. Nat Genet 2001;29:441–6. [PubMed: 11726931]
- Olsen KM, et al. Linkage disequilibrium mapping of *Arabidopsis CRY2* flowering time alleles. Genetics 2004;167:1361–9. [PubMed: 15280248]
- 7. Shindo C, et al. Role of *FRIGIDA* and *FLOWERING LOCUS C* in determining variation in flowering time of Arabidopsis. Plant Physiol 2005;138:1163–73. [PubMed: 15908596]
- 8. Lempe J, et al. Diversity of flowering responses in wild *Arabidopsis thaliana* strains. PLoS Genet 2005;1:e6.

- 9. Werner JD, et al. *FRIGIDA*-independent variation in flowering time of natural *A. thaliana* accessions. Genetics. 2005in press
- Werner JD, et al. Quantitative trait locus mapping and DNA array hybridization identify an *FLM* deletion as a cause for natural flowering-time variation. *Proc. Natl. Acad. Sci.* USA 2005;102:2460–5.
- Franklin KA, Davis SJ, Stoddart WM, Vierstra RD, Whitelam GC. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell 2003;15:1981–9. [PubMed: 12953105]
- Monte E, et al. Isolation and characterization of *phyC* mutants in *Arabidopsis* reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 2003;15:1962–80. [PubMed: 12953104]
- 13. Conti E, Izaurralde E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 2005;17:316–25. [PubMed: 15901503]
- 14. Dybbs M, Ngai J, Kaplan JM. Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion. PLoS Genet 2005;1:e2.
- 15. Cowl JS, et al. The *PHYC* gene of *Arabidopsis*. Absence of the third intron found in *PHYA* and *PHYB*. Plant Physiol 1994;106:813–4. [PubMed: 7991704]
- Qin M, Kuhn R, Moran S, Quail PH. Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J 1997;12:1163–72. [PubMed: 9418054]
- Halliday KJ, Thomas B, Whitelam GC. Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J 1997;12:1079– 90. [PubMed: 9418049]
- 18. Weinig C, et al. Novel loci control variation in reproductive timing in *Arabidopsis thaliana* in natural environments. Genetics 2002;162:1875–84. [PubMed: 12524356]
- Wang X, Korstanje R, Higgins D, Paigen B. Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res 2004;14:1767–72. [PubMed: 15310659]
- Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M. Analysis of natural allelic variation at flowering time loci in the Landsberg *erecta* and Cape Verde Islands ecotypes of *Arabidopsis thaliana*. Genetics 1998;149:749–764. [PubMed: 9611189]
- 21. Borevitz JO, et al. Quantitative trait loci controlling light and hormone response in two accessions of *Arabidopsis thaliana*. Genetics 2002;160:683–96. [PubMed: 11861571]
- 22. Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F. Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 2002;104:1173–1184. [PubMed: 12582628]
- El-Lithy ME, Clerkx EJ, Ruys GJ, Koornneef M, Vreugdenhil D. Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol 2004;135:444–58. [PubMed: 15122039]
- 24. Wolyn DJ, et al. Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in *Arabidopsis thaliana*. Genetics 2004;167:907–17. [PubMed: 15238539]
- 25. Endler, JA. Princeton University Press; Princeton, NJ: 1977. Geographic Variation, Speciation, and the Clines; p. 262
- 26. Stinchcombe JR, et al. A latitudinal cline in flowering time in *Arabidopsis thaliana* modulated by the flowering time gene *FRIGIDA*. *Proc. Natl. Acad. Sci.* USA 2004;101:4712–7.
- 27. Schmid KJ, et al. Evidence for a large-scale population structure of *Arabidopsis thaliana* from genome-wide single nucleotide polymorphism markers. Theor Appl Genet 1:11.2006
- Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD. Epistatic interaction between *Arabidopsis FRI* and *FLC* flowering time genes generates a latitudinal cline in a life history trait. *Proc. Natl. Acad. Sci.* USA 2004;101:15670–15675.
- 29. Aranzana MJ, et al. Genome-wide association mapping in *Arabidopsis* identifies previously known flowering time and pathogen resistance genes. PLoS Genet 2005;1:e60. [PubMed: 16292355]
- Wagner D, Quail PH. Mutational analysis of phytochrome B identifies a small COOH-terminaldomain region critical for regulatory activity. *Proc. Natl. Acad. Sci.* USA 1995;92:8596–8600.

- Xu Y, Parks BM, Short TW, Quail PH. Missense mutations define a restricted segment in the Cterminal domain of phytochrome A critical to its regulatory activity. Plant Cell 1995;7:1433–43. [PubMed: 8589627]
- 32. Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 1993;5:147–157. [PubMed: 8453299]
- 33. Takano M, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 2005;17:3311–25. [PubMed: 16278346]
- Mathews S, Donoghue MJ. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 1999;286:947–50. [PubMed: 10542147]
- White GM, Hamblin MT, Kresovich S. Molecular evolution of the phytochrome gene family in sorghum: changing rates of synonymous and replacement evolution. Mol Biol Evol 2004;21:716– 23. [PubMed: 14963106]
- Devos KM, Beales J, Ogihara Y, Doust AN. Comparative sequence analysis of the *Phytochrome C* gene and its upstream region in allohexaploid wheat reveals new data on the evolution of its three constituent genomes. Plant Mol Biol 2005;58:625–41. [PubMed: 16158239]
- 37. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003;19:2496–7. [PubMed: 14668244]
- Swofford DL. PAUP: A computer program for phylogenetic inference using maximum parsimony. J Gen Physiol 1993;102:9A.
- Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics 1998;14:817–8. [PubMed: 9918953]



#### Figure 1.

Identification of a defective *PHYC* allele in Fr-2. (a) Expression profiles of genes that are differentially expressed between Fr-2 and Col across 34 wild strains. The genomic interval that co-segregates with early flowering of Fr-2 were analyzed for differentially expressed genes using the AtGenExpress dataset of expression data from 34 strains<sup>8</sup>. Of 112 genes in this interval represented on the ATH1 microarray, 11 were differentially expressed between Col-0 and Fr-2, and are shown here. (b) Expression profile of *PHYC* (At5g38540) in the 34 strains shown in (a). (c) Red light response of Fr-2, Col-0 and *phyB*-9 in Col-0. The response of Fr-2 is similar to that of *phyB*-9, indicating reduced red light sensitivity. (d) Flowering under short days of different parental lines and their  $F_1$  progeny.



#### Figure 2.

Quantitative complementation analysis with different parental lines. Col-0 was used as the wild type and the null allele *phyC-2* in the Col-0 background as a tester for the crosses. An ANOVA was performed with the following model: TLN~ Line + Cross + Line x Cross. The Line x Cross interaction was significant in all three combinations (p < 0.0001). However, the proportion of total variance accounted for by the Line x Cross interaction varies (shown as R<sup>2</sup>), which is consistent with the L*er* allele being intermediate in activity between the Col-0 and Fr-2 alleles.



#### 822 E K E Position 446 505 726 735 754 1017 NKK KQQ L W Col-0 T K T S T T RKK M Ler М L A. lyrata Т

#### Figure 3.

*PHYC* haplotypes. A representative unrooted phylogenetic tree generated from *PHYC* coding sequences is shown on top. Numbers indicate bootstrap values above 60. The amino acid changes that delineate the two haplotype groups are given below. Unique changes compared to the outgroup *A. lyrata* are found in both haplotypes. Amino acids that are conserved in other phytochromes (Q or E at position 735, and E at position 822), but changed in either the Col-oor Ler-type haplotype, are boxed. See Supplementary Table 6 online for provenance of strains.



#### Figure 4.

Latitudinal cline of *PHYC* alleles. (a) Proportion of Ler-type (black) and Col-0-type (white) *PHYC* alleles at different latitudes among apparently *FRI* functional strains. The absolute numbers for each of the classes is given on top of the histograms. (b) Distribution of *p*-values of a nominal logistic regression model with latitude as a factor and genotypes as response. Allele information of 65 random SNP markers with similar allele frequency as that of *PHYC* was available in a set of 163 strains. This information was used as a response. Note genomewide skew towards small *p*-values. (c) Distribution of *p*-values for interaction of a given random marker with *FRI* in an interaction model with latitude as the response and *FRI* and marker genotypes as factors with interaction.



#### Supplementary Figure 1.

Markers used for mapping of the early flowering phenotype in Fr- 2. About 80 early plants were genotyped for all markers and linkage of the phenotype to MSat 5.22 and SO191 was confirmed with 60 additional early plants.



#### **Supplementary Figure 2.**

Flowering behavior of populations segregating for different *PHYC* alleles. (a) Distribution of flowering time in an  $F_2$  population derived from Ler x Fr-2 cross showing a continuous distribution, in contrast to a bimodal distribution observed in an  $F_2$  population derived from the Col x Fr-2 cross (see Lempe, J. et al. Diversity of flowering responses in wild *Arabidopsis thaliana* strains. PLoS Genet. 1, e6 [2005]). (b) Average flowering times of plants with different allelic combinations at *PHYC* in  $F_2$  populations derived from Ler x Fr-2 and Col x Fr-2. A single copy of the Col-0 allele delays flowering much more than a single Ler allele. (c) Genetic complementation analysis with Ler.Flowering times of  $F_1$  progeny in short days along with parental lines are shown.



#### Supplementary Figure 3.

Latitudinal cline of *PHYC* alleles. (a) Distribution of *p*-values of a nominal logistic regression model with latitude as a factor and genotype as response. Allele information of 69 random SNP markers with similar allele frequency as that of *PHYC* was available in a set of 56 strains. This information was used as a response. Note genome-wide skew towards small *p*-values. (c) Distribution of *p*-values for interaction of a given random marker with *FRI* in an interaction model with latitude as the response and *FRI* and marker genotypes as factors with interaction. *PHYC* falls in the top bin for both associations and the *p*-values for *PHYC* are smaller than those for *FLC*.

#### Table 1

### Summary of QTL in existing RIL sets.

| RIL set          | Trait                                                          | PHYC haplotype contrast | QTL at PHYC | Reference |  |
|------------------|----------------------------------------------------------------|-------------------------|-------------|-----------|--|
| Ler x Col-0      | Flowering time in fall cohorts                                 | Yes                     | Yes         | 18        |  |
| Bay-0 x Shahdara | Flowering time in short days                                   | Yes                     | Yes         | 22        |  |
| Kas-1 x Col-0    | Hypocotyl length in red light                                  | Yes                     | Yes         | 24        |  |
| Ler x Cvi-0      | Flowering time in short days;<br>hypocotyl length in red light | No                      | No          | 20; 21    |  |
| Nd-1 x Col-0     | Flowering time in short days                                   | No                      | No          | 10        |  |
| Ler x Shahdara   | Flowering time in short days                                   | No                      | No          | 23        |  |

#### Table 2

Associations of *PHYC* with hypocotyl lengths across range of conditions.

|                    | Average hypoc       |                       |                 |
|--------------------|---------------------|-----------------------|-----------------|
| Environment        | Ler haplotype group | Col-0 haplotype group | <i>p</i> -value |
| White              | 7.11                | 6.09                  | 0.001           |
| Blue               | 6.42                | 5.78                  | 0.02            |
| Red                | 10.42               | 9.43                  | 0.02            |
| Far red            | 5.40                | 4.77                  | 0.02            |
| Gibberellin (GA)   | 8.42                | 7.03                  | 0.0003          |
| Brassinozole (BRZ) | 5.62                | 5.08                  | 0.05            |
| Dark               | 12.45               | 12.00                 | 0.21            |

\* from ref. 5

### PHYC haplotypes of A. thaliana strains.

| No       | Accessions       | Stock <sup>#</sup> | Country     | Latitude       | РНҮС       | FRI* <sup>†</sup> | $FLC^{\dagger}$ |
|----------|------------------|--------------------|-------------|----------------|------------|-------------------|-----------------|
| 1        | Aa-0             | CS900              | Germany     | 51             | Ler        | Del               | В               |
| 2        | Ag-0             | CS901              | France      | 45             | Ler        | Wt                | Α               |
| 3        | Ak-1             | N939               | Germany     | 48.6           | Ler        | Del               | A               |
| 4        | An-I             | CS6603<br>N051     | Belgium     | 51.5           | Ler        | Del               | A               |
| 5        | Alig-1<br>Bay-0  | N951<br>N955       | Germany     | J0.02<br>40.05 | Col        | Del               | R               |
| 7        | Bch-1            | N957               | Germany     | 53 37          | Col        | Del               | A               |
| 8        | Bch3             | N959               | Germany     | 53.37          | Ler        | Del               | B               |
| 9        | Bch4             | N961               | Germany     | 53.37          | Col        | Del               | Ā               |
| 10       | Be-1             | N967               | Germany     | 49.5           | Ler        | Del               | В               |
| 11       | Ber-0            | CS8068             | Denmark     | 55             | Ler        |                   |                 |
| 12       | B1-1             | CS6615             | Italy       | 44.5           | Col        | Wt                | В               |
| 13       | Bla-1            | N971               | Spain       | 41.68          | Ler        | Wt                | A               |
| 14       | Bla-11           | N985               | Spain       | 41.68          | Ler        | Wt                | A               |
| 15       | Bla-12<br>Bla-14 | N987<br>N080       | Spain       | 41.68          |            | Del               | А               |
| 10       | Bla-14<br>Bla-2  | N969<br>N973       | Spain       | 41.00          | Ler        | Wt                | ۸               |
| 18       | Bla-3            | N975               | Spain       | 41.68          | Ler        | Wt                | A               |
| 19       | Bla-5            | N6620              | Spain       | 41.68          | Col        | Wt                | 11              |
| 20       | Bla-6            | N6621              | Spain       | 41.68          | Ler        | Wt                | А               |
| 21       | Blh-1            | CS6645             | Czech       | 48.83          | Ler        | Wt                |                 |
| 22       | Bor-4            | CS22591            | Czech       | 49.5           | Ler        | Wt                |                 |
| 23       | Br-0             | N995               | Czech       | 49.2           | Ler        | Wt                | Α               |
| 24       | Bs-1             | N997               | Switzerland | 47.55          | Ler        | Del               | В               |
| 25       | C24              | CS906              | Portugal    | 40.2           | Ler        | Wt                | Α               |
| 26       | Ca-0             | CS6658             | Germany     | 50.5           | Ler        | Del               | В               |
| 27       | Can-0            | N1065              | Spain       | 28             | Ler        | Wt                |                 |
| 28       | Cha-0<br>Chi 0   | N1069<br>N1072     | Switzerland | 46.03          | Col        | Wt<br>Wt          |                 |
| 29       | Cn 1             | N1075<br>N1085     | Russia      | 34<br>40.2     | Lor        | W L<br>W/t        | ٨               |
| 31       | Co-2             | N1085              | Portugal    | 40.2           | Col        | Wt                | A               |
| 32       | Co-3             | N1089              | Portugal    | 40.2           | Col        | Wt                | А               |
| 33       | Col              | Lab Stock          | rörtugui    | 1012           | Col        | Del               | A               |
| 34       | Ct-1             | CS6674             | Italy       | 37.5           | Ler        | Del               |                 |
| 35       | Da(1-12)         | CS917              | Czech       | 49.45          | Ler        | Wt                | А               |
| 36       | Da-0             | CS6676             | Germany     | 50             | Ler        | Del               | В               |
| 37       | Db-0             | N1101              | Germany     | 50             | Col        | Del               | В               |
| 38       | Db-1             | CS6678             | Germany     | 50             | Col        | Del               | В               |
| 39       | Db-2             | N6679              | Germany     | 50             | Col        | Del               | В               |
| 40       | DI-1<br>D: 2     | N1109<br>N1111     | France      | 47.42          |            | Del               | В               |
| 41       | Di-2             | CS010              | France      | 47.42          | Ler        | Del               | A               |
| 42       | Dr-0             | N1115              | Germany     | 51.05          | Ler        | Del               | B               |
| 44       | Dra-0            | CS6685             | Czech       | 49.42          | Ler        | Wt                | Ă               |
| 45       | Dra-1            | N1119              | Czech       | 49.42          | Ler        | Del               | А               |
| 46       | Dra-2            | N1121              | Czech       | 49.42          | Col        | Del               | А               |
| 47       | Ei-2             | CS6689             | Germany     | 50.25          | Ler        | Wt                | Α               |
| 48       | Ei-5             | N6691              | Germany     | 50.25          | Ler        | Wt                |                 |
| 49       | Ei-6             | N1131              | Germany     | 50.25          | Ler        | Del               | В               |
| 50       | Eil-0            | N1133              | Germany     | 51.5           | Col        | Del               | A               |
| 51       | EI-0<br>En 1     | N1135<br>N1127     | Germany     | 51.5           | Ler        | Del               | В               |
| 52<br>53 | Ell-1<br>En-2    | N1137<br>N1130     | Germany     | 50.15          | Col        | Del               | Б               |
| 53<br>54 | En-0             | N1133              | Germany     | 50.15          | Ler        | Del               |                 |
| 55       | Er-0             | N1143              | Germany     | 49.58          | Col        | Del               | А               |
| 56       | Est-1            | N1151              | Estonia     | 59             | Ler        | Del               | A               |
| 57       | Et-0             | N1153              | France      | 44.63          | Ler        | Wt                |                 |
| 58       | Fei-0            | CS22645            | Portugal    | 39             | Ler        | Del               |                 |
| 59       | Fi-0             | N1157              | Germany     | 50.5           | Col        | Del               | Α               |
| 60       | Flo-0            | CS6044             | Italy       | 43.8           | Ler        | Wt                | Α               |
| 61       | Fr-2             | N1169              | Germany     | 50.2           | Ler        | Del               | В               |
| 62       | Fr-3             | N1171              | Germany     | 50.12          | Ler        | Del               | В               |
| 03<br>64 | FT-4<br>Er 5     | N11/3<br>N1175     | Germany     | 50.12          | Ler<br>Col | Del               | В               |
| 04<br>65 | г1-3<br>Fr-6     | N1175<br>N1177     | Germany     | 50.12          | C01<br>Lor | Del               | Δ               |
| 66       | Fr-7             | N1179              | Germany     | 50.12          | Ler        | Del               | R               |
| 67       | Ga-0             | N1181              | Germany     | 50.3           | Col        | Del               | A               |
| 68       | Gd-1             | N1185              | Germany     | 53.55          | Ler        | Del               |                 |
| 69       | Gie-0            | N1193              | Germany     | 50.5           | Col        | Del               | В               |
| 70       | Go-0             | N1195              | Germany     | 51.5           | Ler        | Del               |                 |
| 71       | Go-2             | N1197              | Germany     | 51.5           | Ler        | Del               | В               |
| 72       | GOT1             | N22277             | Germany     | 51.5           | Ler        | Wt                |                 |

| No       | Accessions       | Stock <sup>#</sup> | Country                | Latitude       | РНҮС     | FRI* <sup>†</sup> | FLC      |
|----------|------------------|--------------------|------------------------|----------------|----------|-------------------|----------|
| 73       | GOT10            | N22286             | Germany                | 51.5           | Ler      | Wt                |          |
| 74       | GOT7             | CS22608            | Germany                | 51.5           | Ler      | Wt                |          |
| 5        | Gr-1             | N1199              | Austria                | 47.06          | Ler      | Del               | A        |
| 6        | Gr-3             | N1203              | Austria                | 47.06          | Col      | Wt                | A        |
| 7        | Gr-5             | N1207              | Austria                | 47.06          | Col      | Wt                | В        |
| 8        | Gr-6             | N6/28              | Austria                | 47.06          | Ler      | Wt                | В        |
| 9        | Gu-0             | N1213              | Germany                | 50.4           | Ler      | Del               | В        |
| 0        | Gu-I             | N1215              | Germany                | 50.4           | Ler      | Del               | В        |
| 1        | Gy-0             | N1217              | France                 | 49             | Col      | Del               | A        |
| 2        | H55              | CS932              | Czecn                  | 50             | Col      | Del               | A        |
| 3        | Ha-0             | N1219<br>N1221     | Germany                | 52.5           | Col      | Del<br>Del        | A        |
| 4<br>5   | Hau-0            | N1221<br>CS6726    | Denmark<br>Natharlanda | 53.07          | Ler      | Del<br>Dal        | р        |
| 5        | HI-0             | C30/30             | Commentands            | 52.5           | Ler      | Del               | Б        |
| 07       | HI-2<br>HI 2     | N1231<br>N1222     | Germany                | 52.58<br>52.28 | Ler      | Del               | Б        |
| 0        | HI-5             | N1255<br>N1225     | Germany                | 52.58<br>51.5  | Ler      | Del               | A<br>D   |
| 0        | Inii-U<br>Ia O   | N1255<br>N1241     | Germany                | 50.49          | Lei      | Del               | D        |
| 9        | 18-0             | N1241<br>CS6745    | Grach                  | 50.46          | Cal      | Del               | <u>Б</u> |
| 1        | JI-5<br>Im ()    | CS0743             | Czech                  | 40.04          | Lor      | Del               | P        |
| 1        | JIII-0<br>Im 1   | C30740<br>N1261    | Czech                  | 49.04          | Cal      | Del               | D<br>A   |
| 2        | JIII-1<br>Ko O   | CS6752             | Austria                | 49.04          | Col      | Del               | A        |
| 5<br>4   | Kas-2            | CS6751             | India                  | 40.5           | Ler      | Wt                | B        |
| +<br>5   | Kas-2<br>Kb 0    | CS6753             | Gormony                | 50.5           | Col      | Dal               | <u>Б</u> |
| 5        | K0-0<br>K1 0     | N1275              | Gormany                | 50.03          | Lor      | Del               | P        |
| 7        | KI-0<br>K1 1     | N1273              | Gormany                | 50.93          | Lei      | Del               | D        |
| 8        | K1-1<br>K1 5     | CS1284             | Germany                | 50.93          | Lei      | Del               | D A      |
| 0        | Kn 0             | N1287              | Lithuania              | 54.0           | Col      | Wt                | P        |
| 2<br>00  | Kn-2             | N1280              | Denmark                | 55 5           | Ler      | Wt                | Б        |
| 00       | Kordara          | N6175              | Tojikiston             | 39.91          | Lei      | W L<br>XX/t       | D        |
| 02       | Kondara<br>Kro-0 | N1301              | Germany                | 50.2           | Col      | Del               | B        |
| 02       | K710             | N1301<br>N22442    | Kazakhstan             | 50.42          | Col      | Wt                | Б        |
| 04       | K711             | N22442             | Kazakhstan             | 50.42          | Col      | Wt                |          |
| 04       | KZ11<br>La-1     | N1303              | Poland                 | 52 73          | Ler      | Wt                |          |
| 05       | La-1<br>Lor      | Lab Stock          | rolaliu                | 52.15          | Ler      | Del               |          |
| 00       | Ler_K            | Lab Stock          |                        |                | Ler      | Del               |          |
| 07       | Lei-K            | N6011              | Germany                | 50.38          | Col      | Wt                | в        |
| 00       | Li-10<br>Li-2    | N6008              | Germany                | 50.38          | Col      | Wt                | Б        |
| 10       | LI-2<br>Li2-1    | N1215              | Germany                | 50.38          | Col      | W L<br>XX/t       | •        |
| 10       | L12.1<br>L i_7   | CS6878             | Germany                | 50.38          | Ler      | Del               | B        |
| 12       | Lin-0            | N1337              | Poland                 | 53 47          | Col      | Wt                | Δ        |
| 12       | L1p=0            | N1330              | Spain                  | 41.82          | Ler      | Wt                | A .      |
| 13       | L1-0<br>L1_1     | N1341              | Spain                  | 41.82          | Ler      | Wt                | A        |
| 14       | I 1-11           | N1341              | Spain                  | 41.82          | Col      | Wt                | А        |
| 16       | L1-11<br>11-2    | N1343              | Spain                  | 41.82          | Ler      | Del               | ۸        |
| 10       | LI-2<br>Lm-2     | C\$6784            | France                 | 41.62          | Ler      | Del               | A        |
| 18       | Lui-2<br>Lo-1    | N1347              | Germany                | 47 62          | Col      | Del               | B        |
| 10       | Lo-1<br>Lo-2     | N1340              | Germany                | 47.62          | Ler      | Del               | B        |
| 20       | Lov-5            | C\$22575           | Sweden                 | 62             | Ler      | Wt                | Б        |
| 20       | Lov-5<br>Lz-0    | CS6788             | France                 | 46             | Ler      | Del               | ۸        |
| 21       | Ma-0             | N1357              | Germany                | 40<br>50 5     | Ler      | Del               | A .      |
| 22       | Mh-0             | N1367              | Poland                 | 53.78          | Ler      | Del               | B        |
| 24       | Mh-1             | N1369              | Poland                 | 53 78          | Ler      | Del               | R        |
| 25       | Mir-0            | N1379              | Italv                  | 45 65          | Ler      | Wt                | L<br>L   |
| 26       | Mnz-0            | N1371              | Germany                | 50             | Ler      | Del               |          |
| 20       | Mr_0             | N1373              | Italy                  | 44 5           | Col      | Wt                | Δ        |
| 27       | Mrk-0            | N1375              | Germany                | 49             | Ler      | Del               | B        |
| 20       | Ms_0             | N1375              | Russia                 | 55 75          | Col      | Wt                | B        |
| 30       | Mz-0             | N1383              | Germany                | 50.85          | Ler      | Del               | Δ        |
| 31       | Na_1             | CS6801             | Erance                 | 17.5           | Ler      | Del               | B        |
| 32       | Nc-1             | N1389              | France                 | 48.6           | Ler      | Del               | Δ        |
| 33       | Nd-0             | N1301              | Germany                | 50.47          | Col      | Del               | 11       |
| 34       | Nd-1             | N1680              | Germany                | 50.47          | Col      | Del               | Δ        |
| 35       | No-0             | N1395              | Germany                | 51             | Col      | Del               | Δ        |
| 36       | Nok-0            | N1399              | Netherlands            | 52.23          | Col      | Wt                | B        |
| 37       | Nok-3            | N1405              | Netherlands            | 52.23          | Ler      | Wt                | R        |
| 38       | Np-0             | N1307              | Germany                | 52.25          | Col      | Del               | р        |
| 30       | Nw-0             | N1400              | Germany                | 50.32          | Ler      | Del               | R        |
| 40       | Nw-2             | N1/12              | Germany                | 50.32          | Lor      | Del               | u<br>q   |
| 41       | Nw-3             | N1415              | Germany                | 50.32          |          | Del               | ы<br>а   |
| 42<br>42 | Ob-0             | N1413              | Germany                | 50.52          | Lor      | Del               | D<br>P   |
| +∠<br>13 | Ob-0             | N1417<br>N1401     | Gormany                | 50.2           |          | Del               | D        |
| +3<br>44 | 00-1<br>0b 2     | IN 1421<br>N1 422  | Germany                | 50.2           | Lor      | Del               | р        |
| +4       | 00-2<br>Ob 2     | IN 1425<br>N1425   | Germany                | 50.2           | Ler      | Del               | В        |
| +J<br>16 | 00-5             | IN 1425<br>N1 407  | Germany                | 52.02          | C01<br>L | Del<br>D-1        | р        |
| +0       | Old-1            | IN 1427            | Germany                | 55.05          | Ler      | Del               | В        |
| /        | Old-2            | N1429              | Germany                | 53.03          | Ler      | Del               | В        |

| No  | Accessions     | Stock <sup>#</sup> | Country     | Latitude       | РНҮС | FRI* <sup>†</sup> | $FLC^{\dagger}$ |
|-----|----------------|--------------------|-------------|----------------|------|-------------------|-----------------|
| 148 | Or-0           | N1433              | Germany     | 50.5           | Col  | Wt                | В               |
| 149 | Ost-0          | N1431              | Sweden      | 60.5           | Col  | Wt                | -               |
| 150 | Ove-0          | N1435              | Germany     | 53.33          | Col  | Del               | В               |
| 151 | Oy-0           | N1437              | Norway      | 60.5           | Ler  | Del               | В               |
| 152 | Oy-1<br>Dr. 2  | N6929              | Norway      | 60.5           | Col  | Del               | A               |
| 153 | Pa-2<br>Da 2   | N1441<br>N1442     | Italy       | 37.83          | Ler  | Wt                | A               |
| 154 | Pa-5<br>Dor 1  | IN 1445<br>N1445   | Bussie      | 37.83<br>58.02 | Col  | Del<br>Wt         | Б               |
| 155 | Per-2          | N1449              | Russia      | 58.02          | Col  | Wt                | Б               |
| 157 | Per-3          | N1451              | Russia      | 58.02          | Col  | Wt                |                 |
| 158 | Pf-0           | N1453              | Germany     | 48.5           | Ler  | Del               | в               |
| 159 | Pi-0           | N1455              | Austria     | 47.12          | Ler  | Del               | B               |
| 160 | Pi-2           | N1457              | Austria     | 47.12          | Ler  | Del               | B               |
| 161 | Pla-1          | N1459              | Spain       | 41.82          | Ler  | Wt                | А               |
| 162 | Pla-2          | N1463              | Spain       | 41.82          | Ler  | Wt                |                 |
| 163 | Pn-0           | N1469              | France      | 48             | Ler  | Wt                | А               |
| 164 | Po-1           | N1473              | Germany     | 50.5           | Col  | Wt                | Α               |
| 165 | Pr-0           | N1475              | Germany     | 50.5           | Ler  | Del               | В               |
| 166 | PUZ16          | N22451             | Czech       | 49.12          | Ler  | Wt                |                 |
| 167 | Ra-0           | N1481              | France      | 46.02          | Ler  | Del               |                 |
| 168 | Rak-2          | CS6846             | Czech       | 49.03          | Col  | Del               | A               |
| 169 | Rd-0           | N1483              | Germany     | 50.5           | Ler  | Del               | В               |
| 170 | REN1           | N22253             | France      | 46.02          | Ler  | Del               |                 |
| 1/1 | RENII<br>DI DI | N22263             | France      | 46.02          | Ler  | Del               | р               |
| 172 | RLDI<br>Rev 0  | N915<br>N1490      | Franco      | 30.3<br>40.5   | Lor  | Del<br>Wt         | В               |
| 175 | Rou-0          | N1409<br>N1/01     | Pussia      | 49.5           | Col  | Wt                | R               |
| 175 | Rsch-4         | N1495              | Russia      | 56.86          | Col  | Del               | B               |
| 176 | Sav-0          | N1515              | Czech       | 50.00          | Col  | Del               | D               |
| 177 | Se-0           | N1503              | Spain       | 42.5           | Ler  | Wt                | А               |
| 178 | Sei-0          | N6853              | Italy       | 46.5           | Ler  | Del               | В               |
| 179 | Sf-1           | N1513              | Spain       | 42.05          | Ler  | Wt                | А               |
| 180 | Sf-2           | N1517              | Spain       | 42.05          | Ler  | Wt                |                 |
| 181 | Sf-2e          | N1675              | Spain       | 42.05          | Ler  | Wt                |                 |
| 182 | Sg-1           | N1519              | Germany     | 48.12          | Ler  | Del               | А               |
| 183 | Sg-2           | N1521              | Germany     | 48.12          | Ler  | Del               | А               |
| 184 | Shakdara       | N6180              | Tajikistan  | 37.48          | Ler  | Wt                | В               |
| 185 | Sn(5)-1        | N6181              | Czech       | 50             | Col  | Del               | A               |
| 186 | Sorbo          | CS931              | Tajikistan  | 39             | Ler  | Wt                | В               |
| 187 | Sp-0           | N1531              | Germany     | 52.5           | Col  | Wt                | A               |
| 188 | St-0           | N1535              | Sweden      | 59             | Ler  | Wt                | A               |
| 189 | Stw-0          | N1539              | Russia      | 52.96          | Ler  | W L               | A               |
| 190 | Tamm 2         | C\$22604           | Einland     | 49.42          | Col  | W L<br>W/t        | A               |
| 191 | Te-0           | C522004<br>N1551   | Finland     | 60             | Ler  | Wt                | ۵               |
| 192 | Te-1           | N1553              | Spain       | 41 72          | Ler  | Wt                | А               |
| 194 | Ts-5           | N6871              | Spain       | 41.72          | Ler  | Wt                | А               |
| 195 | Ts-6           | N1561              | Spain       | 41.72          | Ler  | Wt                | A               |
| 196 | Ts-7           | N1563              | Spain       | 41.72          | Ler  | Wt                | В               |
| 197 | Tu-1           | N1569              | Italy       | 45             | Ler  | Del               | В               |
| 198 | Uk-1           | N1575              | Germany     | 48.03          | Ler  | Del               | А               |
| 199 | Uk-2           | N1579              | Germany     | 48.03          | Ler  | Del               | А               |
| 200 | Uk-3           | N1577              | Germany     | 48.03          | Ler  | Del               | Α               |
| 201 | Uk-4           | N1581              | Germany     | 48.03          | Ler  | Del               | А               |
| 202 | ULL2-5         | CS22586            | Sweden      | 56.09          | Ler  | Wt                |                 |
| 203 | Var2-6         | CS22581            | Sweden      | 55.33          | Col  | Wt                |                 |
| 204 | Wa-1           | N1587              | Poland      | 52.5           | Col  | Wt                | в               |
| 205 | WC-1           | N1589              | Germany     | 52.6           | Col  | Del               | A               |
| 206 | Wc-2           | N1591<br>N6192     | Germany     | 52.6           | Col  | Del               | A               |
| 207 | Wei-U          | N0182              | Switzerland | 47.42          | Ler  | Del<br>Del        | A               |
| 208 | Wil O          | IN 1005            | Lithuania   | 47.42          | Cal  | Der               | D               |
| 209 | Wil-0<br>Wil-1 | C50000<br>N1595    | Littiuania  | 54.08          | Col  | Wt                | ۵               |
| 211 | Wil-3          | N1599              | Lithuania   | 54 68          | Col  | Wt                | A               |
| 212 | W1-0           | N1631              | Germany     | 48 75          | Ler  | Del               | B               |
| 213 | Ws             | N6924              | Ukraine     | 52.5           | Col  | Del               | Б               |
| 214 | Ws-0           | CS6891             | Ukraine     | 52.5           | Ler  | Wt                | А               |
| 215 | Ws-2           | CS2360             | Ukraine     | 52.5           | Col  | Del               | В               |
| 216 | Wt-1           | N1605              | Germany     | 52.67          | Ler  | Del               | Ă               |
| 217 | Wt-4           | N1611              | Germany     | 52.67          | Ler  | Del               | A               |
| 218 | Wt-5           | N1613              | Germany     | 52.67          | Ler  | Del               | В               |
| 219 | Wu-0           | N1615              | Germany     | 49.78          | Ler  | Del               | В               |
| 220 | Zu-0           | N1627              | Switzerland | 47.42          | Ler  | Wt                | А               |
| 221 | Zu-1           | N1629              | Switzerland | 47 42          | Ler  | Del               | Δ               |

| No | Accessions | Stock <sup>#</sup> | Country | Latitude | РНҮС | FRI* <sup>†</sup> | $FLC^{\dagger}$ |
|----|------------|--------------------|---------|----------|------|-------------------|-----------------|
|    |            |                    |         |          |      |                   |                 |

"Wt" denotes no lesion known, thus putatively wild type.

<sup>†</sup>Genotype of *FRI* and *FLC* from: Lempe, J. et al. Diversity of flowering responses in wild *Arabidopsis thaliana* strains. PLoS Genet. 1, e6 (2005); Shindo, C. et al. Role of *FRIGIDA* and *FLOWERING LOCUS C* in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163-73 (2005); Caicedo, A.L., Stinchcombe, J.R., Olsen, K.M., Schmitt, J. & Purugganan, M.D. Epistatic interaction between *Arabidopsis FRI* and *FLC* flowering time genes generates a latitudinal cline in a life history trait. Proc. Natl. Acad. Sci. USA 101, 15670-15675 (2004).

ANOVA of latitude by *PHYC* haplotype group interaction on residual variation in flowering time at 23°C in short days after accounting for *FRI* functionality. The significance for each of the factors is given.

| Factor                                                                             | DF          | Sum of Squares               | FValue                 | Probability (>F)        |
|------------------------------------------------------------------------------------|-------------|------------------------------|------------------------|-------------------------|
| Latitude<br>PHYC haplotype group<br>PHYC haplotype group x<br>latitude interaction | 1<br>1<br>1 | 2144.61<br>484.79<br>5344.66 | 6.374<br>1.44<br>15.88 | 0.013<br>0.23<br>0.0001 |

Multiple R-Squared: 0.12, Adjusted R-squared: 0.10, p-value = 0.0017

*p*-values obtained from for different models testing for association with latitude (Latitude), *FRI* dependent interaction with latitude (Interaction), hypocotyl length under GA treatment (GAHypo) and total leaf number in short days (TLNSD) for 67 markers across 163 strains. The rankings for each of the markers in each of the association is given (A) Model: Logistic regression model of SNP ~ Latitude. (B) Model: Latitude ~ *FRI* functionality + SNP + SNP \* *FRI* functionality. The p-values for the whole model, *FRI* functionality, SNP, and for interaction with *FRI* are tabulated. Ranks are given for the interaction with *FRI*. (C) Model: Hypocotyl Length ~ SNP (D). Model: TLNSD ~ SNP. The table is sorted according to the rankings obtained for the logistic regression model for association with latitude. While the *p*-value ranking for flowering time (D) does not appear to be significant after background correction, the relative ranking is still consistent with a true association.

| S.No     | SNP_ID                 | Chr           | Latitude | Interaction | GAHypo | TLNSD  | A        | В        | С        | D        |
|----------|------------------------|---------------|----------|-------------|--------|--------|----------|----------|----------|----------|
| 1        | PHYC                   | 5             | 0.0008   | 0.0053      | 0.0007 | 0.0464 | 1        | 4        | 1        | 12       |
| 2        | MASC05657              | 2             | 0.0015   | 0.003       | 0.5509 | 0.0107 | 2        | 1        | 45       | 5        |
| 3        | MASC09206              | 1             | 0.0018   | 0.008       | 0.0048 | 0.1806 | 3        | 5        | 4        | 22       |
| 4        | MASC04123              | 4             | 0.002    | 0.6459      | 0.9914 | 0.0015 | 4        | 41       | 65       | 2        |
| 5        | MASC01545              | 5             | 0.004    | 0.1401      | 0.3519 | 0.4806 | 5        | 17       | 27       | 43       |
| 6        | MASC03470              | 5             | 0.0043   | 0.6222      | 0.0015 | 0.2799 | 6        | 40       | 2        | 28       |
| 7        | MASC04925              | 3             | 0.0085   | 0.0542      | 0.0232 | 0.6168 | 7        | 12       | 9        | 49       |
| 8        | MASC02841              | 3             | 0.0157   | 0.9957      | 0.0413 | 0.5713 | 8        | 60       | 11       | 47       |
| 9        | MASC02668              | 4             | 0.0158   | 0.0425      | 0.2932 | 0.0898 | 9        | 10       | 26       | 15       |
| 10       | MASC04608              | 3             | 0.0208   | 0.0839      | 0.7705 | 0.4357 | 10       | 14       | 55       | 40       |
| 11       | MASC04199              | 4             | 0.0322   | 0.003       | 0.2083 | 0.012  | 11       | 2        | 20       | 6        |
| 12       | FLC                    | 5             | 0.065    | 0.6914      | 0.165  | 0.4469 | 12       | 43       | 17       | 42       |
| 13       | MASC04642              | 4             | 0.0691   | 0.7149      | 0.4218 | 0.026  | 13       | 45       | 34       | 8        |
| 14       | MASC09219              | 3             | 0.0763   | 0.2447      | 0.8056 | 0.5349 | 14       | 25       | 58       | 46       |
| 15       | MASC03128              | 5             | 0.0982   | 0.0138      | 0.0098 | 0.6111 | 15       | 6        | 6        | 48       |
| 16       | MASC04262              | 3             | 0.1074   | 0.9856      | 0.9817 | 0.2048 | 16       | 59       | 64       | 24       |
| 17       | MASC09216              | 4             | 0.1219   | 0.0405      | 0.5819 | 0.7262 | 17       | 9        | 47       | 55       |
| 18       | MASC04523              | 3             | 0.1243   | 0.216       | 0.2516 | 0.1393 | 18       | 22       | 23       | 19       |
| 19       | MASC03898              | 3             | 0.1271   | 0.2063      | 0.285  | 0.0656 | 19       | 19       | 25       | 14       |
| 20       | MASC09214              | 4             | 0.1306   |             | 0.9575 |        | 20       | 65       | 62       | 65       |
| 21       | MASC03344              | 3             | 0.1359   | 0.0484      | 0.216  | 0.4093 | 21       | 11       | 21       | 38       |
| 22       | MASC03263              | 4             | 0.1501   | 0.039       | 0.4177 | 0.6615 | 22       | 8        | 33       | 50       |
| 23       | MASC03336              | 4             | 0.1545   | 0.3065      | 0.7493 | 0.0025 | 23       | 31       | 53       | 3        |
| 24       | MASC09224              | 3             | 0.1908   |             |        |        | 24       | 64       | 66       | 64       |
| 25       | MASC04275              | 5             | 0.1928   | 0.0326      | 0.7308 | 0.9608 | 25       | 7        | 51       | 61       |
| 26       | MASC03218              | 3             | 0.1978   | 0.3064      | 0.9651 | 0.0075 | 26       | 30       | 63       | 4        |
| 27       | MASC05434              | 2             | 0.2061   | 0.0031      | 0.1286 | 0.1418 | 27       | 3        | 16       | 20       |
| 28       | MASC05803              | 2             | 0.223    | 0.4262      | 0.7569 | 0.1165 | 28       | 33       | 54       | 18       |
| 29       | MASC02820              | 4             | 0.2553   | 0.9957      | 0.0758 | 0.1925 | 29       | 61       | 15       | 23       |
| 30       | MASC02675              | 5             | 0.265    | 0.4309      | 0.3951 |        | 30       | 34       | 29       | 67       |
| 31       | MASC04350              | 5             | 0.3068   | 0.3032      | 0.5487 | 0.4376 | 31       | 29       | 44       | 41       |
| 32       | MASC03340              | 1             | 0.3377   | 0.9327      | 0.0016 | 0.9389 | 32       | 57       | 3        | 59       |
| 33       | MASC01582              | 5             | 0.3984   | 0.1158      | 0.4567 | 0.0564 | 33       | 16       | 38       | 13       |
| 34       | MASC09208              | 5             | 0.4068   | 0.0915      | 0.5423 | 0.2976 | 34       | 15       | 43       | 29       |
| 35       | MASC09222              | 2             | 0.4078   | 0.2145      | 0.6152 | 0.8375 | 35       | 21       | 48       | 57       |
| 36       | MASC09225              | 4             | 0.4341   | 0.189       | 0.3974 | 0.6978 | 36       | 18       | 30       | 52       |
| 37       | MASC09204              | 1             | 0 4425   |             | 0 4427 | 0 3189 | 37       | 62       | 37       | 32       |
| 38       | MASC05029              | 1             | 0.446    | 0 2473      | 0.9011 | 0.0107 | 38       | 26       | 61       | 63       |
| 39       | MASC09209              | 5             | 0.4692   | 0.2837      | 0 4333 | 0.018  | 39       | 28       | 35       | 7        |
| 40       | MASC04170              | 1             | 0 4773   | 0.4648      | 0.3656 | 0.9573 | 40       | 35       | 28       | 60       |
| 41       | MASC04516              | 3             | 0.4804   | 0.2292      | 0.5042 | 0.0014 | 41       | 23       | 40       | 1        |
| 42       | MASC04531              | 5             | 0.507    | 0.7203      | 0.0459 | 0.1567 | 42       | 46       | 12       | 21       |
| 43       | MASC01361              | 5             | 0.5156   | 0.9625      | 0.0065 | 0.2725 | 43       | 58       | 5        | 27       |
| 44       | MASC04983              | 5             | 0.5687   | 0.9625      | 0.0005 | 0.2725 | 44       | 67       | 67       | 66       |
| 45       | MASC05258              | 4             | 0.5879   | 0 2078      | 0.4156 | 0.0929 | 45       | 20       | 32       | 16       |
| 46       | MASC05360              | 2             | 0.6034   | 0.2070      | 0.8991 | 0.5288 | 46       | 51       | 60       | 45       |
| 40       | MASC09223              | 1             | 0.6925   | 0.8852      | 0.6706 | 0.3146 | 40       | 52       | 50       | 31       |
| 48       | MASC03911              | 1             | 0.0923   | 0.6533      | 0.6247 | 0.6995 | 48       | 42       | 49       | 53       |
| 10       | MASC03631              | 1             | 0.708    | 0.0555      | 0.5422 | 0.3653 | 40       | 42       | 42       | 34       |
| 50       | MASC03051<br>MASC03754 | 1             | 0.708    | 0.0171      | 0.100  | 0.3055 | 50       | 55       | 10       | 37       |
| 51       | MASC09704              | 1             | 0.7215   | 0.5523      | 0.7385 | 0.4001 | 51       | 38       | 52       | 25       |
| 52       | MASC06809              | 2             | 0.749    | 0.0572      | 0.0107 | 0.2307 | 52       | 13       | 7        | 2J<br>59 |
| 53       | MASC05386              | $\frac{2}{2}$ | 0.747    | 0.0372      | 0.0741 | 0.075  | 52       | 36       | 14       | 50       |
| 55       | MASC0300               | 2             | 0.7040   | 0.4901      | 0.0741 | 0.705  | 55       | 20       | 14       | 20       |
| 54<br>55 | MASCOSUUI              | 5             | 0.7705   | 0.2707      | 0.170  | 0.410  | 54       | 21<br>56 | 10       | 29       |
| 33<br>56 | MASC03447              | 1             | 0.7952   | 0.927       | 0.0257 | 0.3217 | 33<br>56 | 30<br>54 | 20       | 33<br>56 |
| 30<br>57 | MASC011/1              | 3             | 0.7907   | 0.9082      | 0.4387 | 0.7554 | 30<br>57 | 54       | 39<br>24 | 20       |
| 51       | MASC03902              | 2             | 0.798    |             | 0.255  | 0.4045 | 51       | 03       | 24       | 20       |
| 58<br>50 | MASC03012              | 5             | 0.8155   | 0.0050      | 0.2268 | 0.3117 | 28       | 00       | LL       | 50       |
| 59<br>60 | MASC0/090              | 3             | 0.8166   | 0.8059      | 0.5/29 | 0.4927 | 59       | 49       | 46       | 44       |
| 00       | MASC0585/              | 2             | 0.8183   | 0.2335      | 0./916 | 0.0456 | 00       | 24       |          | 11       |

| S.No | SNP_ID    | Chr | Latitude | Interaction | GAHypo | TLNSD  | А  | В  | С  | D  |
|------|-----------|-----|----------|-------------|--------|--------|----|----|----|----|
| 61   | MASC04591 | 5   | 0.831    | 0.8886      | 0.0133 | 0.9837 | 61 | 53 | 8  | 62 |
| 62   | MASC02577 | 1   | 0.8586   | 0.7039      | 0.886  | 0.2659 | 62 | 44 | 59 | 26 |
| 63   | MASC03658 | 1   | 0.8815   | 0.5312      | 0.0733 | 0.0407 | 63 | 37 | 13 | 10 |
| 64   | MASC04209 | 1   | 0.9083   | 0.559       | 0.4395 | 0.3838 | 64 | 39 | 36 | 35 |
| 65   | MASC09210 | 5   | 0.9267   | 0.852       | 0.7992 | 0.0972 | 65 | 50 | 57 | 17 |
| 66   | MASC03952 | 5   | 0.9722   | 0.3312      | 0.5352 | 0.6953 | 66 | 32 | 41 | 51 |
| 67   | MASC04819 | 3   | 0.975    | 0.7392      | 0.4083 | 0.0403 | 67 | 48 | 31 | 9  |

*p*-values obtained from for two different models testing for latitudinal association with a completely independent set of markers across 56 strains. (A) Model: Latitude ~ *FRI* functionality + SNP + SNP \* *FRI* functionality. The *p*-values for the entire model, *FRI* functionality, SNP, and for interaction with *FRI* are tabulated. Ranks are given for the interaction with *FRI*. (B) Model: Logistic regression model of SNP ~ Latitude. SNP\_ID refers to unique identifier for SNP assays (see http://naturalvariation.org). The table is sorted according to the rankings obtained for *FRI*-dependent interaction with latitude.

| S.No     | SNP_ID           | Chr | Model           | FRI             | SNP   | Interaction | Latitude   | Rank | Rank     |
|----------|------------------|-----|-----------------|-----------------|-------|-------------|------------|------|----------|
|          |                  |     |                 |                 |       | (A)         | <b>(B)</b> | Α    | В        |
| 1        | 44607503         | 2   | 9E-05           | 9E-05           | 8E-04 | 0.00009     | 0.0669     | 1    | 15       |
| 2        | 44607971         | 1   | 9E-05           | 9E-05           | 3E-04 | 0.00009     | 0.0756     | 2    | 19       |
| 3        | 44607332         | 2   | 9E-05           | 9E-05           | 0.448 | 0.0021      | 0.8365     | 3    | 64       |
| 4        | 44606338         | 5   | 9E-05           | 0.0011          | 0.005 | 0.0027      | 0.1083     | 4    | 22       |
| 5        | 44606550         | 4   | 9E-05           | 0.0061          | 0.002 | 0.0032      | 0.0097     | 5    | 6        |
| 6        | 44606183         | 1   | 0.0001          | 0.0039          | 0.256 | 0.0036      | 0.7846     | 6    | 59       |
| 7        | 44607627         | 2   | 9E-05           | 9E-05           | 7E-04 | 0.0048      | 0.0675     | 7    | 16       |
| 8        | 44607727         | 2   | 9E-05           | 0.0853          | 0.031 | 0.0049      | 0.1595     | 8    | 28       |
| 9        | 44607751<br>DUVC | 4   | 0.0002          | 0.0001          | 0.355 | 0.0099      | 0.61//     | 9    | 48       |
| 10       | 21607149         | 5   | 9E-05           | 0.0048          | 0.004 | 0.0137      | 0.0213     | 10   | 10       |
| 11       | 2100/148         | 5   | 0.0002          | 0.0002          | 0.005 | 0.0255      | 0.0041     | 11   | 3        |
| 12       | 4400/4/0         | 2   | 0.0007          | 0.0885          | 0.025 | 0.0330      | 0.0487     | 12   | 14       |
| 13       | 21007040         | 1   | 0.0001<br>0E 05 | 0.008           | 0.005 | 0.0342      | 0.0221     | 15   | 21       |
| 14       | 44007230         | 5   | 0.0002          | 0.0021<br>0E 05 | 0.009 | 0.0453      | 0.1002     | 14   | 21       |
| 15       | 44000400         | 1   | 0.0002          | 0.0063          | 0.135 | 0.0437      | 0.1407     | 15   | 20       |
| 17       | 44606631         | 3   | 9E-05           | 0.0005          | 0.003 | 0.057       | 0.0044     | 10   | 4        |
| 18       | 44607685         | 1   | 9E-05           | 9E-05           | 0.003 | 0.0598      | 0.0044     | 18   | 8        |
| 19       | 44607364         | 1   | 0.001           | 0.0002          | 0.507 | 0.0570      | 0.1609     | 10   | 29       |
| 20       | 44606867         | 1   | 0.0028          | 0.0002          | 0.308 | 0.0902      | 0.762      | 20   | 58       |
| 21       | 44607792         | 4   | 0.0006          | 0.0002          | 0.277 | 0.1278      | 0 1403     | 21   | 25       |
| 22       | 21607556         | 2   | 0.0023          | 0.2412          | 0.05  | 0.1276      | 0.0403     | 22   | 12       |
| 23       | 44607389         | 3   | 0.0008          | 0.0005          | 0.575 | 0.1359      | 0.7544     | 23   | 57       |
| 24       | 44607528         | 1   | 0.0067          | 0.0084          | 0.402 | 0.1421      | 0.7198     | 24   | 56       |
| 25       | 44606134         | 1   | 0.0005          | 0.0086          | 0.036 | 0.1612      | 0.0713     | 25   | 18       |
| 26       | 44607545         | 4   | 0.0029          | 0.0002          | 0.321 | 0.1794      | 0.8851     | 26   | 66       |
| 27       | 21607250         | 3   | 0.0019          | 0.0001          | 0.599 | 0.1898      | 0.8422     | 27   | 65       |
| 28       | 44607014         | 3   | 9E-05           | 0.0009          | 6E-04 | 0.1948      | 0.0004     | 28   | 1        |
| 29       | 44607841         | 4   | 0.0003          | 0.0405          | 0.009 | 0.2167      | 0.0066     | 29   | 5        |
| 30       | 21607496         | 3   | 0.0044          | 0.1019          | 0.477 | 0.2335      | 0.3426     | 30   | 37       |
| 31       | 44608020         | 3   | 0.0134          | 0.0314          | 0.351 | 0.2398      | 0.2445     | 31   | 31       |
| 32       | 44606484         | 5   | 0.0007          | 0.0119          | 0.439 | 0.2566      | 0.0024     | 32   | 2        |
| 33       | FLC              | 5   | 0.0022          | 0.0002          | 0.939 | 0.2993      | 0.4111     | 33   | 41       |
| 34       | 44606273         | 3   | 0.0077          | 0.0228          | 0.543 | 0.3061      | 0.6601     | 34   | 51       |
| 35       | 44607307         | 1   | 0.0127          | 0.0017          | 0.095 | 0.3287      | 0.6678     | 35   | 52       |
| 36       | 44606354         | 1   | 0.0007          | 0.0409          | 0.024 | 0.3377      | 0.0142     | 36   | 9        |
| 37       | 44606989         | 2   | 0.0045          | 0.0041          | 0.983 | 0.3435      | 0.8179     | 37   | 60       |
| 38       | 44606843         | 3   | 0.0018          | 0.0002          | 0.824 | 0.344       | 0.5148     | 38   | 45       |
| 39       | 44606199         | 2   | 0.0028          | 0.0002          | 0.82  | 0.4136      | 0.9311     | 39   | 68       |
| 40       | 44607561         | 4   | 0.001           | 0.0028          | 0.036 | 0.4194      | 0.0108     | 40   | 7        |
| 41       | 44607701         | 2   | 0.0015          | 0.0008          | 0.299 | 0.4318      | 0.0404     | 41   | 13       |
| 42       | 44606208         | 3   | 0.0087          | 0.0014          | 0.912 | 0.4388      | 0.9917     | 42   | 71       |
| 43       | 4460/446         | 5   | 0.0037          | 0.0004          | 0.362 | 0.5047      | 0.9009     | 43   | 67       |
| 44       | 2160/463         | 1   | 0.0087          | 0.0065          | 0.924 | 0.5338      | 0.9351     | 44   | 69       |
| 45       | 446077775        | 3   | 0.0035          | 0.0003          | 0.595 | 0.5496      | 0.8255     | 45   | 61       |
| 40       | 446077008        | 1   | 0.0043          | 0.0009          | 0.436 | 0.5526      | 0.3139     | 40   | 34       |
| 47       | 4400/898         | 2   | 0.0055          | 0.0016          | 0.559 | 0.3008      | 0.4104     | 47   | 42       |
| 48       | 44000118         | 4   | 0.0106          | 0.0014          | 0.87  | 0.5742      | 0.0848     | 48   | 25       |
| 49<br>50 | 4400/39/         | 5   | 0.0021          | 0.0003          | 0.39  | 0.5652      | 0.3223     | 49   | 20       |
| 51       | 44008000         | 1   | 0.0039          | 0.0008          | 0.4   | 0.3973      | 0.2313     | 51   | 52       |
| 52       | 44007739         | 4   | 0.0041          | 0.001           | 0.505 | 0.018       | 0.0705     | 52   | 35<br>46 |
| 53       | 44000313         | 2   | 0.0049          | 0.0000          | 0.323 | 0.0233      | 0.30       | 53   | 30       |
| 54       | 44606081         | 1   | 0.0007          | 0.0002          | 0.233 | 0.6272      | 0.2321     | 54   | 38       |
| 55       | 21697327         | 4   | 0.0008          | 0.0555          | 0.421 | 0.6748      | 0.4299     | 55   |          |
| 56       | 44606753         | 1   | 0.0018          | 0.0004          | 0.001 | 0.6838      | 0.1227     | 56   | 23       |
| 57       | 44607553         | 4   | 0.0476          | 0.0652          | 0.765 | 0.6963      | 0.4169     | 57   | 43       |
| 58       | 44607479         | 2   | 0.0054          | 0.0007          | 0 791 | 0 7222      | 0 3566     | 58   | 39       |
| 59       | 44607193         | 5   | 0.0055          | 0.0026          | 0.926 | 0.7245      | 0.8339     | 59   | 63       |
| 60       | 44606387         | 3   | 0.0068          | 0.0007          | 0.885 | 0.7247      | 0.8307     | 60   | 62       |
| 61       | 44607873         | 1   | 0.004           | 0.0003          | 0.287 | 0.7387      | 0.5846     | 61   | 47       |
| 62       | 44606794         | 1   | 0.0054          | 0.0017          | 0.761 | 0.8111      | 0.1506     | 62   | 27       |
| 63       | 44606607         | 3   | 0.0014          | 0.0005          | 0.065 | 0.8348      | 0.0775     | 63   | 20       |
| 64       | 44606916         | 4   | 0.0055          | 0.0007          | 0 774 | 0.8535      | 0.6765     | 64   | 54       |

| S.No | SNP_ID   | Chr | Model  | FRI    | SNP   | Interaction<br>(A) | Latitude<br>(B) | Rank<br>A | Rank<br>B |
|------|----------|-----|--------|--------|-------|--------------------|-----------------|-----------|-----------|
| 65   | 44607160 | 5   | 0.0037 | 0.0005 | 0.722 | 0.8843             | 0.6312          | 65        | 50        |
| 66   | 44607955 | 4   | 0.0047 | 0.0022 | 0.188 | 0.9104             | 0.0688          | 66        | 17        |
| 67   | 44606216 | 4   | 0.0072 | 0.0495 | 0.873 | 0.9307             | 0.276           | 67        | 33        |
| 68   | 44607299 | 1   | 0.0032 | 0.0064 | 0.355 | 0.9356             | 0.9446          | 68        | 70        |
| 69   | 21607631 | 4   | 0.0028 | 0.0003 | 0.348 | 0.9685             | 0.6289          | 69        | 49        |
| 70   | 44607405 | 4   | 0.0036 | 0.0047 | 0.214 | 0.9749             | 0.1342          | 70        | 24        |
| 71   | 44606102 | 3   | 0.0059 | 0.0587 | 0.98  | 0.9833             | 0.3713          | 71        | 40        |

#### Oligonucleotide primers.

| Lab designation | Sequence                    |  |
|-----------------|-----------------------------|--|
| G-4861          | CTC AGC TTC TCT CCC ACC AC  |  |
| G-4862          | CCC CAT AAG TGT CTG CCA GT  |  |
| G-4863          | CAA GTA TGG AGC AGC GTG AA  |  |
| G-4864          | GCA TAC CCC ATT TTC ATT GG  |  |
| G-4865          | TAC CGC AAG CTT CGA GAT TT  |  |
| G-4866          | TCG AGA GCC AAG GCT AAC AT  |  |
| G-4867          | CTG TGG TTT CTG GCT CCA AT  |  |
| G-4868          | TCC CTT TCT CAA AGG CTG AA  |  |
| G-4873          | GAT TGG CAG TTG AAC AAG CA  |  |
| G-4874          | GCA TAC CCC ATT TTC ATT GG  |  |
| G-5349          | CAA ATC GCA TAA ATGCAT GG   |  |
| G-5350          | AGT GGT GGG AGA GAA GCT GA  |  |
| G-5351          | CTT GTG CTC ATG AAC GGC TA  |  |
| G-5352          | CGT GAT GAC AAA CCA CCA AG  |  |
| G-5353          | CCA ATG AAA ATG GGG TAT GC  |  |
| G-5354          | CCT GAT GCG TCT TCT TCT CC  |  |
| G-5355          | GGA GAA GAA GAC GCA TCA GG  |  |
| G-5356          | TTC TTT CGG GAA TTT CAT CG  |  |
| G-5357          | GTT TGT GGC TCC CAT TTT GT  |  |
| G-5358          | GGA AAA GAC CGA AAC ACC AA  |  |
| G-5359          | GTG TCG TGA GTC GTG ACC AG  |  |
| G-5360          | TGG AAT CAA ACC CAA CAT CTC |  |
| G-5361          | ACG CAA AGC TAC ACG GAA AC  |  |
| G-5362          | GAC GCC ACT GAT CCC ATA TT  |  |
| G-5363          | GGC TTC AGC AAA TCC TTT CA  |  |
| G-5364          | TCG AAC CCA GAT GAC ACA AA  |  |
| G-5365          | TTT TGT GTC ATC TGG GTT CG  |  |
| G-5366          | TGC CCG TTT AAT ACC TGC AT  |  |
| G-5367          | TCT CCA TCG ACG TTA AAC CA  |  |

*PHYC* region was amplified in four fragments using primer combinations G-5351 and G-5352; G-4863 and G-4864; G-4873 and G-4868, and G-5363 and G-5364. Other primers were used as sequencing primers and to fill in sequence gaps where necessary.

### Strains sequenced for PHYC.

| Strain    | Stock Number |
|-----------|--------------|
| Bay-0     | N955         |
| Bur-0     | N1029        |
| C24       | Lab Stock    |
| Col-0     | N1093        |
| Est-1     | N1151        |
| Fr-2      | N1169        |
| Ga-0      | N1181        |
| Gu-0      | N1213        |
| Gy-0      | N1217        |
| HR5       | N22205       |
| Jm-1      | N1261        |
| Kondara   | N6175        |
| Ler       | Lab Stock    |
| L1-2      | N1343        |
| Ms-0      | N1377        |
| Mz-0      | N1383        |
| Nd-1      | N1680        |
| Nok-3     | N1405        |
| Ra-0      | N1481        |
| REN1      | N22253       |
| Ri-0      | N1493        |
| RLD1      | N913         |
| Se-0      | N1503        |
| Sf-2      | N1517        |
| Te-0      | N1551        |
| Ts-1      | N1553        |
| Tsu-1     | N6926        |
| Van-0     | CS6884       |
| Wei-0     | N6182        |
| A. lyrata | Lab stock    |