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Genomics has the potential to revolutionize the diagnosis 
and management of cancer by offering an unprecedented 
comprehensive view of the molecular underpinnings of 
pathology. Computational analysis is essential to transform 
the masses of generated data into a mechanistic understanding 
of disease. Here we review current research aimed at uncovering 
the modular organization and function of transcriptional 
networks and responses in cancer. We first describe how 
methods that analyze biological processes in terms of higher-
level modules can identify robust signatures of disease 
mechanisms. We then discuss methods that aim to identify the 
regulatory mechanisms underlying these modules and processes. 
Finally, we show how comparative analysis, combining human 
data with model organisms, can lead to more robust findings. 
We conclude by discussing the challenges of generalizing these 
methods from cells to tissues and the opportunities they offer to 
improve cancer diagnosis and management.

Genomics provides powerful tools with which to probe the  components 
and behavior of biological systems. Microarrays, high-throughput 
chromatin immunoprecipitation1,2 (ChIP) and tissue microarrays3 
inform us on different perspectives of the molecular mechanisms 
underlying cellular functions. The staggering volume of  molecular 
data  resulting from the rapid adoption of such techniques has 
underscored the importance of computational analysis as a key link 
between data generation and the formulation of new hypotheses. It 
is widely believed that genomics will transform our understanding 
of the mechanisms underlying the function of cells and organisms, 
and revolutionize the diagnosis and management of disease by offer-
ing an unprecedented comprehensive view of the molecular under-
pinnings of pathology4,5. Gene-expression profiling has been applied 
extensively in cancer research. Gene-expression microarrays have been 
analyzed using clustering algorithms that group genes and samples 
on the basis of expression profiles, and statistical methods that score 

genes on the basis of their relevance to various clinical attributes 
(Supplementary Note online). Using these methods, investigators 
have identified new classes of hematological malignancies, predicted 
 prognosis in lung cancer and breast cancer and made many  mechanistic 
observations (Supplementary Fig. 1 online). Despite the natural 
 caution associated with the implementation of new technologies in 
the clinical arena, the utility of the results of microarray analysis as an 
effective diagnostic tool at the point of care is already being assessed6.

Approaches such as clustering and identification of gene signatures, 
though successful, tend to ignore much of the signal in the data, both 
in genes whose activity changes but does not pass the threshold for dif-
ferential expression and in genes that are differentially expressed but 
unfamiliar to the researcher analyzing the list. Furthermore, because 
these analyses are done at the gene level, they are prone to the inherent 
noise that exists both in the sample population and in different stages 
of assaying gene expression. Moreover, simply listing genes associated 
with a certain tumor type is far from identifying the biological processes 
in which these genes are involved. Finally, clustering genes with similar 
expression patterns does not identify the causal molecular mechanisms 
that regulate them. Therefore, developing analysis methods that can 
extract a more biologically meaningful understanding of the processes 
giving rise to cancer is a key challenge. Here, we focus on ongoing research 
that attempts to achieve this goal, discuss challenges in its application to 
complex multicellular tissues and conclude with some opportunities for 
using these methods to improve cancer diagnosis and treatment.

A module-level view
To transcend from individual genes to biological processes, several 
recent methods7–10 use gene modules as the basic building blocks 
for analysis. These methods aim to distill a higher-order and more 
interpretable characterization of transcriptional changes. Moreover, 
by considering coherent changes in expression in larger modules, we 
can identify patterns that are too subtle to discern when considering 
expression profiles of individual genes in isolation.

Mootha et al.8 (Fig. 1a) tested biologically coherent sets of genes 
(e.g., pathways) for association with disease phenotypes. They applied 
their method to a data set of human diabetic muscle, with the goal of 
identifying processes that were systematically altered in diabetic muscle. 
Their analysis showed that, by examining the joint behavior of a set of 
genes, they could detect significant changes even in cases where the 
expression of individual genes was not significantly different. It was 
only in the coherent signal associated with a higher-level entity that 
the pattern was evident.
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Segal et al.7 applied a module-level analysis to obtain a global view of 
the shared and unique molecular modules underlying human cancer. 
They compiled a ‘cancer compendium’ from multiple studies and a 
large collection of biologically meaningful gene sets from experimen-
tal studies and human-curated annotations. They identified gene sets 
with similar behavior across arrays, combined them into modules and 
used these modules to characterize a variety of clinical conditions (e.g., 

tumor stage and type) by the combination of activated and deactivated 
modules. In the resulting ‘cancer module map’7 (Fig. 1b), the activa-
tion or repression of some modules (e.g., cell cycle) was shared across 
multiple tumor types and could be related to general tumorigenic 
processes, whereas others (e.g., growth-regulatory modules; Fig. 1c) 
were more specific to the tissue origin or progression of particular 
tumors. Conversely, the module map characterized each condition by 
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Figure 1  Module-level analysis. (a) Example from the gene-set enrichment analysis method of Mootha et al.8 showing that the expression of oxidative 
phosphorylation genes is reduced in diabetic muscle. The mean expression of all genes (gray) and of the oxidative phosphorylation genes (red) is plotted for 
individuals with type 2 diabetes mellitus (DM2) versus those with normal glucose tolerance (NGT). The individual genes in the set changed only modestly 
and could not be identified using standard analyses for differentially expressed genes. But the pattern over the set as a whole is statistically significant. 
(b–e) These panels illustrate how module maps7 suggest new functional roles for specific proliferation and apoptosis genes in acute leukemia. (b) The cancer 
module map of Segal et al.7, shown as a matrix of modules (rows) versus array clinical conditions (columns), in which a red (or green) entry for module m and 
condition c indicates that the arrays in which module m was significantly induced (or repressed) contained more arrays from condition c than would be expected 
by chance. The intensity of the entries corresponds to the fraction of arrays in the module from condition c that were significantly induced (or repressed). White 
entries indicate that both the induced and repressed arrays were significant for the given annotation. The rows and columns of the matrix were each clustered 
into distinct clusters, and the resulting clusters are indicated by vertical and horizontal lines. Related conditions (or modules) are often clustered together in 
the module map. But many modules are shared across conditions, indicating that tumors are characterized by combinations of a small number of shared and 
unique modules. (c) Submatrix of the full map in b for related growth-regulatory processes. These modules are mostly used by hematologic malignancies. In 
most cases, a particular condition shows either uniform induction or repression of most growth-modulating modules, both apoptotic and antiapoptotic, indicating 
a complex response. (d) The Growth Inhibitory Module (highlighted in red in c). Shown are all arrays in which the module’s genes change significantly, and the 
direction of change (induction or repression) in each such array is indicated (middle; red or green, respectively). Gray pixels represent missing values. The arrays 
corresponding to acute leukemia are indicated by brown pixels in the top row. The membership of the module genes in the two gene sets from which the module 
was generated is shown (left, purple pixels). (e) Growth Inhibitory Module genes (purple) in the context of the MAPK pathways of proliferation and apoptosis 
(as compiled from known interactions in the literature). Most module genes are known to inhibit cell growth (bold blue border). Some are known to directly or 
indirectly repress ERK1, an activator of cell proliferation known to be constitutively active in acute leukemia. Others are known to activate the apoptosis repressor 
p38. Thus, the concerted downregulation of these growth suppressors may allow ERK1 and p38 to escape regulation, leading to uncontrolled proliferation and 
reduced cell death. Only DUSP2 was previously implicated in acute leukemia; other module genes are new potential targets.
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a particular combination of module activity, providing insight into the 
mechanisms underlying specific malignancies. For example, the Growth 
Inhibitory Module (Fig. 1d) consisted primarily of growth suppressors 
coordinately repressed in a subset of acute leukemia arrays and sug-
gested a possible explanation for the uncontrolled proliferation and 
reduced cell death in these tumors (Fig. 1e). Other modules were shared 
across a diverse set of clinical conditions, suggestive of common tumor-
progression mechanisms. For example, a bone osteoblastic module, 
spanning various tumor types, included both secreted growth factors 
and their receptors, suggesting a single mechanism for both primary 
tumor proliferation and metastasis to bone.

These results and others8,9,11–13 illustrate the value of analyzing com-
plex processes such as tumorigenesis in terms of higher-level gene mod-
ules and biological processes. This type of analysis increases our ability 
to identify the signal in microarray data and provides results that are 
more interpretable than gene lists. In particular, when grouped together 
into a coherent module, the functional and clinical effects of pleiotropic 
genes might become more apparent, as would the complexity of the 
mechanism that has to be addressed therapeutically (Fig. 1e). Finally, 
a modular approach can be applied uniformly to multiple data sources 

from different tumor types, thereby uncovering the commonalities and 
differences of multiple clinical conditions.

From modules to regulatory mechanisms
The characterization of cancer processes in terms of transcriptional 
changes in genes or modules is only a step towards the goal of obtaining 
a detailed mechanistic model of the processes leading to malignancy. 
Recent work attempts to use gene expression and other genomic data 
to understand regulatory interactions between genes and how these 
might result in tumorigenesis.

Cellular processes are regulated by a variety of mechanisms, occurring 
at every step in the process of going from DNA to functional proteins. 
Transcriptional regulation, directly observed in gene-expression data, 
controls the production of mRNA transcripts. Important components 
in this process are cis-regulatory elements in a target gene’s promoter 
region, trans-acting factors that bind to these DNA motifs and signaling 
molecules that modulate this process based on exogenous and endog-
enous signals. Genomic data sets offer (noisy) views of different facets 
of this process. Protein-DNA binding events are directly observed in 
ChIP-chip assays14,15. We can computationally detect cis elements in 
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Figure 2  Computational prediction of cis-regulatory networks. (a) One of the cis-regulatory modules produced by the analysis of Beer and Tavazoie27. The 
module is defined in terms of a coherent expression signature and is enriched for genes involved in ribosomal RNA transcription and processing. Its cis-
regulatory profile is defined by the presence of two computationally discovered sequence elements, PAC and RRPE, in a particular positional configuration 
on the chromosome. Genes containing both elements in the correct configuration are tightly coregulated, whereas in genes containing only one of the 
two elements, or containing both elements in a different positional configuration, the distribution of correlations is close to random. The distribution of 
correlations (left), as well as examples of genes that do (top right) and do not (bottom right) satisfy the positional constraint, along with their expression 
patterns, are shown. (b) Transcriptional gene-regulation network under response to rapamycin, produced by the analysis of Bar-Joseph et al.28. The network 
was derived from both gene expression and ChIP data under rapamycin. The analysis resulted in 39 modules (circles) regulated by 13 transcription factors 
(black arrows). Red arrows between transcriptional regulators indicate that the source transcription factor binds at least one module containing the target 
transcription factor. The analysis resulted in new predictions regarding transcriptional regulation of the response to rapamycin, for example the regulation of 
nitrogen metabolism modules by Hap2. (c) One of the modules resulting from applying the method of Segal et al.26 to combined human promoters (1,000 
bp upstream of predicted transcription start sites) and measured expression of human cell cycle in HeLa cells62 (E.S. & D.K., unpublished result). Shown 
is the expression (right) and promoter region (left) of each gene in the module. The genes assigned to this module are known to be involved in mitosis (10 
of 25 genes, P < 10–9), and one of the motifs automatically identified by the method is the known binding site for the nuclear factor of activated T-cells 
(NFAT; red motifs), previously reported to have a role in cell-cycle progression63,64.
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Figure 3  Computational prediction of trans-
regulatory networks. (a) Global module network 
for yeast stress data, derived by Segal et al.41. 
The graph depicts inferred modules (middle, 
numbered squares), their significantly enriched 
cis-regulatory motifs (bottom) and their 
associated regulators (top, black-bordered ovals 
for transcription factors, green-bordered ovals 
for signal-transduction molecules). Modules are 
connected to their significantly enriched motifs 
by solid blue lines. Module groups, consisting of 
sets of modules that share a common motif, and 
their associated motifs are enclosed in bold boxes; 
module groups whose modules are functionally 
related are labeled (right). Red edges between a 
module and a predicted regulator are supported 
in the literature. Three regulators, marked in 
yellow, correspond to previously uncharacterized 
regulators whose predicted role was validated 
experimentally41. Modules belonging to the 
same module group seem to share regulators and 
motifs, with individual modules having different 
combinations of these regulatory elements. 
(b) One of the modules identified by the module 
network analysis of the lung cancer data43 
(N.K., E.S., N.F., A.R., & D.K., unpublished 
result). According to known databases, 17 of 36 
of the genes in this module belong to extracellular 
matrix–related annotations (P < 9 × 10–10); when 
we manually curated the genes in this module, we 
found at least nine additional genes associated with fibrosis and TGFβ signaling. The genes in this module are characterized by having the lowest expression 
levels in normal lung, with higher expression in individuals who died with the disease. The module network procedure predicts that this module is regulated 
by Jun-B, a TGFβ-regulated transcription factor, and TCF4, the WNT–β-catenin target transcription factor65. The genes are overexpressed when Jun-B is 
underexpressed, consistent with reports suggesting that loss of Jun-B activity enabled epithelial mesenchymal transition in tumors66.

promoter sequences, on the basis of experimentally determined sites16, 
de novo identification or evolutionary conservation17,18. Finally, similar 
expression profiles allow us to identify target genes that are controlled 
by a shared regulatory mechanism.

Most attempts to identify regulatory relationships from genomic 
data have focused on the unicellular yeast Saccharomyces cerevisiae. 
One focus aims at reconstructing cis-regulatory circuits19, includ-
ing identifying new cis elements, detecting their targets and identi-
fying combinations of elements that modulate expression of a target 
gene. Because signal at the level of individual genes is often hard to 
detect, most approaches focus on regulatory modules, whose member 
genes are expected to be controlled by similar regulators in a similar 
way20,21. Early approaches identified new individual cis elements that 
are enriched in clusters of coexpressed genes19, or pairs of elements that 
act in synergy under specific conditions22. Recent extensions increase 
accuracy by using other sources of data, such as regulator binding (from 
ChIP-chip assays)21 or evolutionary conservation23,24.

More recently, several studies25–28 have attempted to identify how the 
set of cis-regulatory elements in a gene’s promoter governs its behavior and 
explains the observed expression pattern. Segal et al.26 proposed a model of 
regulatory modules in which module genes shared both a similar expres-
sion profile and a similar profile of cis elements. Thus, a gene’s cis element 
profile determined its module assignment and hence its expression profile. 
Beer and Tavazoie27 subsequently proposed a similar approach, which also 
included a finer-grained model of promoter configuration. Both groups 
showed that a substantial fraction of the signal in gene-expression data 
could be explained in terms of cis-element profiles, and that these pro-
files exhibited an interesting combinatorial organization of elements into 
various logic gates (OR, AND) and spatial configurations (Fig. 2a). This 
general framework can also accommodate transcription factor–binding 

data instead of (or in addition to) cis elements. For example, Bar-Joseph 
et al.28  identified gene modules whose expression could be explained by 
a shared transcription factor–binding profile (Fig. 2b), and Segal et al.25 
combined expression, sequence and transcription factor–binding to iden-
tify combinations of transcription factors, their target modules and the cis 
elements that mediated this regulation.

Despite these successes in model organisms, this approach has yet 
to be broadly applied in multicellular organisms. In particular, most 
 current methods for detecting cis elements are not well suited to the 
large, complex genomes and long intergenic regions typical of  mammals. 
Nevertheless, several researchers have identified  regulatory circuits in 
expression data from synchronized HeLa cells26,29, both  finding known 
cell cycle– regulatory elements and targets, and  suggesting new ones 
(Fig. 2c). Some of the more successful approaches rely on additional sig-
nals, such as evolutionary conservation30, spatial clustering of cis elements 
in the DNA sequence30–34 or a global model of cis regulation and gene 
expression26, to improve the detection of reliable biological signals.

A complementary approach focuses on the transcription fac-
tors and signaling molecules that modulate gene expression either 
directly or indirectly. Although regulator activity is not observed 
directly, if a  regulator is itself transcriptionally regulated, its expres-
sion level can serve as a proxy for its activity, allowing us to infer regu-
latory  interactions correctly from expression profiles. Motivated by 
this insight,  several studies35–37 propose algorithms that construct a 
Bayesian network describing the probabilistic dependencies between 
the expression levels of genes. These methods can detect both direct 
and indirect regulatory relations (e.g., between a MAP kinase and its 
downstream targets). Recent work38,39 extends this approach by using 
more realistic models of binding affinity between transcription factors 
and binding sites, in accordance with biochemical principles40.
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Figure 4 Multispecies analysis of gene expression 
data. (a) Three-dimensional representation of 
a multispecies coexpression network produced 
by Stuart et al.46. The network links metagenes 
(sets of orthologous genes) across four diverse 
organisms (human, fly, worm and yeast) that 
are coexpressed in at least two organisms. 
The network is visualized as a terrain map, in 
which highly correlated metagenes are placed 
in proximity in the x-y plane, and the density 
of genes in a region is shown by the altitude in 
the z direction. The visualization uncovers 12 
components of highly interconnected metagenes, 
which were enriched for metagenes involved in 
similar biological processes. Links in the network 
suggest potential interactions between genes 
that have been conserved across evolution and 
are therefore likely to correspond to functional 
relationships. Stuart et al.46 showed that 
the network can be used to predict a gene’s 
function, by labeling it with the annotations of its 
neighboring genes in the network. They show that, 
for most functional categories, the multispecies 
network performed significantly better in 
making such predictions than any single-species 
coexpression network. (b) Analysis of interaction 
between eight transcriptional modules across six 
organisms, as derived by Bergmann et al.47. Eight 
modules, whose function is known in yeast, were 
used to generate corresponding homolog modules 
in five other organisms. Correlations between 
the module-expression profiles were computed 
for all pairs of modules. Modules are shown as 
circles; significant correlations between them, by colored lines and by distances between the modules. Most of the relations between modules differ among 
organisms. For example, heat shock and protein synthesis are anticorrelated in yeast and fly and correlated in the other four organisms. (c) One of the modules 
learned in a joint model over expression profiles from normal mouse samples and human brain tumors67 using a multispecies extension to the module network 
framework of Segal et al.41 (E.S. & D.K., unpublished result). The module was found in both human and mouse and included 34 orthologous genes from the 
two organisms. Most of the module genes were previously shown to be expressed in brain68 (18 of 34, P < 10–12), supporting their combination into a single 
module. Furthermore, a conserved regulatory role was predicted for the neurogenic differentiation factor NeuroD in both human and mouse (ovals in regulation 
programs). The expression of NeuroD splits the human arrays into two groups; all 60 medulloblastoma arrays in the data set are in the group in which NeuroD is 
overexpressed, a finding supported by the suggested role of NeuroD in medulloblastoma tumors69.

A recent extension is based on the observation that many regulatory 
interactions are shared by all members of a gene module20,39. Segal 
et al.41 proposed the module-network approach for identifying  modules 
of coregulated genes and their shared regulation program, which  specified 
the expression profile of a module’s genes as a function of the expression 
of the module’s regulators. As with the identification of cancer mod-
ules and cis elements, this higher-level analysis improved both statistical 
robustness and biological interpretability. This approach was successfully 
applied to a yeast expression data set, identifying functionally coherent 
modules and known regulatory relations (Fig. 3a). It also suggested test-
able hypotheses regarding the role of transcription factors and signaling 
molecules, three of which were tested and validated experimentally.

A key limitation of such approaches is that many regulators are 
regulated post-transcriptionally, and their activity is undetectable in 
gene-expression data. Nevertheless, in the context of tumorigenic pro-
cesses, there is reason for optimism. Tumorigenesis often arises from 
some change to a cell’s DNA, which in turn results in a perturbation in 
expression of certain key regulators. For example, the Myc oncogene 
is amplified in many tumors, resulting in a concomitant change in the 
expression of its targets42. Thus, even regulators that, under normal 
conditions, are regulated post-transcriptionally may undergo transcrip-
tional regulation in tumor cells, making the regulatory processes more 
apparent in expression data.

Encouraged by this observation, we applied the module network pro-
cedure to a data set of lung cancer arrays43, focusing on regulation by 
transcription factors. In addition to the usual cancer-related  functional 
categories (cell cycle, DNA and RNA repair, and metabolism), we found 
multiple modules enriched for genes associated with extracellular 
inflammation, immunity and extracellular matrix, processes that are 
increasingly recognized to be important in tumor generation and pro-
gression44,45. An in-depth analysis of one of the modules (Fig. 3b) sug-
gested that extracellular matrix–related genes, whose expression is often 
increased in tumors, were not mere representatives of stromal activity 
but were related to tumor clinical biology and were tightly regulated 
by cancer-relevant transcription factors. This example illustrates the 
potential of this approach for identifying transcriptional regulation in 
complex tissues; it also shows how an unbiased discovery approach can 
lead the observer to unexpected conclusions (such as the possible role 
of fibrotic and inflammatory modules in cancer).

Comparative analysis
Taking a more global view, we can extend our analysis to encompass 
multiple studies across diverse organisms and conditions. In such com-
parative analysis, conserved patterns can help to identify true biological 
signals and key mechanisms, and highlight commonalities and differ-
ences. This approach is particularly compelling when applied to the 
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available data from an increasing number of mammalian species and 
of animal models of cancer.

Several works have explored the conservation of coexpression rela-
tionships and gene modules across a diverse range of organisms46–48. 
These works showed that conserved coexpression relationships were 
more likely to correspond to true functional interactions (Fig. 4a) and 
allowed us to study the change in the role of functional modules over 
evolution (Fig. 4b). This analysis can highlight functional modules that 
have a key role in a process of interest. For example, McCarroll et al.48 
identified a common expression signature in aging between flies and 
worms, which included genes involved in mitochondrial metabolism, 
DNA repair and cellular transport.

Applying a similar approach to cancer data from mouse and human 
can shed light on the mechanisms underlying tumorigenesis. For exam-
ple, Sweet-Cordero et al.49 used three different mouse models of lung 
cancer to identify signatures of specific genetic alterations that lead 
to tumorigenesis. They projected the genes in each signature to their 
human orthologs and used a gene-set–based method8 to test for activity 
of these signatures in different human lung tumors. This design used 
changes observed in controlled manipulations in mouse disease models 
to draw insights about disease manifestations in humans.

This approach transfers results of an analysis done in mouse to 
inform a subsequent analysis in human; we can also carry out a joint 
analysis that explicitly searches for patterns conserved across multiple 
species. Along these lines, we analyzed a human-mouse data set of 
normal and tumor brain tissue using an extension50 of the module 
network approach41. This analysis suggested regulatory modules that 
were conserved across human and mouse, and proposed new hypoth-
eses regarding regulation in medulloblastoma (Fig. 4c).

Challenges and opportunities
The reconstruction of the molecular mechanisms that underlie a com-
plex process, such as tumorigenesis, is a formidable challenge. This 
challenge arises in part from difficulties associated with microarray 
assays, including noise in the data and limited reproducibility across 
platforms and researchers51,52. Moreover, most analyses implicitly treat 
mRNA expression as a surrogate for protein activity level, an assump-
tion that does not account for processes such as mRNA stability, protein 
degradation and post-translational modifications. In addition, when 
we attempt to find complex patterns in data, we invariably encounter 
multiple alternative explanations of the data (e.g., clusters, regulatory 
modules, etc.). Therefore, the results of such analysis are sensitive to the 
choice of model and parameters and the specific data used, and must 
be interpreted with care.

Nevertheless, the successes obtained by combining genomic tech-
niques and computational algorithms to reconstruct networks (albeit 
primarily in model organisms) are encouraging. Three recurring themes 
form the basis for this success. The first is the analysis of data at the 
level of biological modules, rather than individual genes, an approach 
that produces results that are biologically interpretable and statistically 
robust. The second is the use of biological knowledge in developing 
analytic techniques, either directly (e.g., to define functionally coherent 
gene sets) or indirectly (e.g., to construct biologically realistic models). 
As we create more realistic biological models, we can hope for bet-
ter biological understanding and more focused predictions to inform 
further experiments. The third theme is the integration of multiple 
sources of data in the analysis. By putting together different partial 
(and noisy) views of a single complex process (gene expression, pro-
moter sequences, protein-DNA binding, protein-protein interactions 
and more), we can often obtain a much more accurate and complete 
picture. In addition, by considering data from different conditions or 

cell types, we can obtain a more global understanding of the function 
of the same set of building blocks in different contexts. Finally, the 
integration of data across organisms allows us to identify functional 
components based on their conservation and, conversely, to recognize 
the mechanisms that are the basis for biological diversity.

Although genomic approaches are prevalent in cancer research, 
we are still far from reconstructing molecular mechanisms in human 
cancer. In fact, the methods we describe do not always scale easily to 
mammalian systems. Unlike yeast genomes, mammalian genomes are 
less compact, and enhancers are more dispersed and remote. Both 
regulatory and signaling networks are larger and more elaborate, and 
the control of many genes and processes involves undefined epigenetic 
mechanisms, a higher degree of combinatorial regulation and mul-
tiple signaling pathways. Furthermore, many interactions are context-
specific, as different components of the molecular network are active 
in  different cellular states and phenotypes.

Much of the added complexity in applying genomic analysis to cancer 
is related to multicellularity, which can confound the analysis of data 
from tissue samples that contain heterogeneous population of cells. 
Most genomic techniques measure an average signal in a sample from 
a cell population. This is a concern even when studying unicellular 
organisms or cell cultures as the averaging process tends to obscure 
variations between cells53–55. When analyzing a heterogeneous tis-
sue, this problem is more pronounced because the signal for different 
cell types is obfuscated; differential regulation of genes associated to 
changes in cell state can be hard to distinguish or can even disappear 
entirely. Moreover, the averaging effect introduces an additional source 
of noise as the proportions of the different cell types are typically differ-
ent across samples. This variability may swamp the variability resulting 
from other, perhaps more relevant, differences between the samples. 
Another, more challenging issue is raised by intercellular signaling in 
tissues. Interactions between cells often lead to complex behaviors, 
which are hard to distinguish from the regulatory processes in the cell 
itself and cannot be emulated in in vitro cell-culture assays. Finally, this 
epigenetic variability is further confounded in tumor samples, where 
considerable genetic variability occurs between and within samples.

In light of these challenges, is there hope for systematic mechanistic 
insights from genomic and computational studies? We believe that a posi-
tive answer lies in the combination of computational and experimental 
insights. Computational methods should be developed to tackle cell 
and tissue heterogeneity56,57. For example, Stuart et al.56 used histologi-
cal evaluation of tissue heterogeneity to deconvolve expression profiles 
and identify cell type–specific expression responses. Experimentally, 
most cancer genomic studies have focused on tumor samples from the 
human population and have therefore suffered from inevitable con-
founding genetic and environmental factors, tissue heterogeneity, lack 
of time courses for disease progression and unavailability of perturba-
tions instrumental in identifying regulatory events. Recent studies9,49,58 
suggest that careful design can greatly improve the utility of such studies, 
by combining the study of human tissue samples with tissue culture and 
animal models, to obtain a more controlled and comprehensive view. For 
example, Lamb et al.9 used expression-profiling in a cell-culture model 
with genetic perturbations to identify a ‘cyclin D signature’, followed by 
computational analysis of a compendium of human tumor expression 
profiles to find the transcription factor that mediated this response in 
tumors. Similarly, Kang et al.59 found a set of genes involved in osteoclas-
tic metastasis by combining expression profiling on human cell cultures 
with phenotypic effects in animal models. Finally, new biological assays, 
such as in situ gene-expression signatures using laser capture microdis-
section60,61 or fluorescence microscopy data, can provide more refined 
observations about gene activation in individual cancer cells54,55.
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Successful identification of mechanisms from genomic data will 
also require more sophisticated computational methods. Much prog-
ress can be made along the themes of modularity, incorporation of 
biological knowledge and data integration across techniques, condi-
tions or organisms. It is important to develop methods that combine 
data across experimental systems that address the same phenomenon 
(e.g., different cancers in humans or the same cancer type in human 
and mouse) and isolate key mechanisms and root causes of the disease. 
The development of such computational methods should go hand in 
hand with that of multipronged experiments combining cell culture, 
animal models and human tumor samples.

A major challenge for analysis is the identification of the correct 
context and functional importance of different events and mecha-
nisms. This issue is particularly pronounced in cancer, in which aber-
rant and normal processes are intertwined. A cancer cell has a mixture 
of different processes: processes that are the source for tumorigenesis 
(e.g., a constitutively active Ras mutant); processes that are normal on 
their own but are suborned by tumors and support their prolifera-
tion (e.g., cell division or angiogenesis); processes that may represent 
the normal host response to the tumor and may even be protective 
(e.g., immune response and inflammatory-cell infiltration); and per-
haps processes that are simply a by-product of cancer and have no func-
tional role. Although some of the modular approaches outlined above 
enhance our ability to analyze disease process–relevant signatures, we 
are still far from understanding the role that these signatures have in 
cancer. We may be able to derive a more comprehensive perspective on 
cancer processes by integrating existing assays with histopathologic, 
clinical and environmental information on the one hand, and with 
measurements of genetic variation, such as SNPs or DNA copy-number 
changes, on the other.

Finally, when considering the analysis of cancer data, we must keep 
in mind that our ultimate goal is to improve diagnosis and treatment of 
the disease. How can the methods we described above help in achieving 
this goal? Understanding cancer processes and identifying new drug 
targets is one contribution, but many of the key regulators and basic 
pathways of carcinogenesis were identified long before the introduction 
of high-throughput methods, through the careful hypothesis-based 
work of molecular and cell biologists. Modular analysis can place 
the complex interactions of these pathways in the biological context 
of the tumor microenvironment. Previous analyses may tell us that 
abnormal WNT–β-catenin pathway activation is important in certain 
solid tumors and increased activation of EGF receptors is important in 
others. The results of modular analyses can uncover a certain tumor’s 
use of bone-survival machinery (that promotes bone metastasis) or 
information about its ability to create a proangiogenic microenviron-
ment or evade immune surveillance; any one of these characteristics 
is potentially crucial to the disease mechanism and the final outcome 
for an affected individual.

An understanding of the complexity of the pathways that create and 
sustain tumors can enable a better use of available therapies by using 
rational combinations in accordance with the pathways that character-
ize a certain cancer. Furthermore, a detailed view of the tumor’s micro-
environment could lead to better design of therapeutic interventions 
that would help to reverse or contain the carcinogenic process. The 
availability of multiple secreted and membrane proteins that charac-
terize tumors should allow the identification of combinatorial markers 
for early detection and noninvasive disease classification, whereas the 
functional and regulatory characterization of tumors should allow per-
sonalized treatment of cancer that is based not on histological appear-
ance but on a global and detailed mechanistic understanding of an 
individual's disease.

Note: Supplementary information is available on the Nature Genetics website.
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