Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains

Abstract

Characterization of the polycystic kidney disease 1 (PKD1) gene has been complicated by genomic rearrangements on chromosome 16. We have used an exon linking strategy, taking RNA from a cell line containing PKD1 but not the duplicate loci, to clone a cDNA contig of the entire transcript. The transcript consists of 14,148 bp (including a correction to the previously described C terminus), distributed among 46 exons spanning 52 kb. The predicted PKD1 protein, polycystin, is a glycoprotein with multiple transmembrane domains and a cytoplasmic C-tail. The N–terminal extracellular region of over 2,500 aa contains leucine–rich repeats, a C–type lectin, 16 immunoglobulin–like repeats and four type III fibronectin–related domains. Our results indicate that polycystin is an integral membrane protein involved in cell–cell/matrix interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dalgaard, O.Z. Bilateral polycystic disease of the kidneys: A follow-up of two hundred and eighty-four patients and their families. Acta Med. Scand. 328, 1–251 (1957).

    CAS  Google Scholar 

  2. Gabow, P.A. Autosomal dominant polycystic kidney disease. New Engl. J. Med. 329, 332–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Milutinovic, J. et al. Liver cysts in patients with autosomal dominant polycystic kidney disease. Am. J. Med. 68, 741–744 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Gabow, P.A. Autosomal dominant polycystic kidney disease–more than a renal disease. Am. J. Kid. Dis. 16, 403–413 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Somlo, S. et al. A kindred exhibiting cosegregation of an overlap connective tissue disorder and the chromosome 16 linked form of autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 4, 1371–1378 (1993).

    CAS  PubMed  Google Scholar 

  6. Carone, F.A., Bacallao, R. & Kanwar, Y.S. Biology of polycystic kidney disease. Lab. Invest. 70, 437–448 (1994).

    CAS  PubMed  Google Scholar 

  7. Calvet, J.P. Polycystic kidney disease: primary extracellular matrix abnormality or defective cellular differentiation? Kid. Int. 43, 101–108 (1993).

    Article  CAS  Google Scholar 

  8. Milutinovic, J., Lawrence, C.Y., Agodoa, M.D., Cutler, R.E. & Striker, G.E. Autosomal dominant polycystic kidney disease: Early diagnosis and consideration of pathogenesis. Am. J. Clin. Path. 73, 740–747 (1979).

    Article  Google Scholar 

  9. Carone, F.A. et al. Impaired tubulogenesis of cyst-derived cells from autosomal dominant polycystic kidneys. Kid. Int. 47, 861–868 (1995).

    Article  CAS  Google Scholar 

  10. Wilson, P.D. & Sherwood, A.C. Tubulocystic epithelium. Kid. Int. 39, 450–463 (1991).

    Article  CAS  Google Scholar 

  11. Peters, D.J.M. et al. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nature Genet. 5, 359–362 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Kimberling, W.J. et al. Autosomal dominant polycystic kidney disease: Localization of the second gene to chromosome 4q13–q23. Genomics. 18, 467–472 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Daoust, M.C., Reynolds, D.M., Bichet, D.G. & Somlo, S. Evidence for a third genetic locus for autosomal dominant polycystic kidney disease. Genomics 25, 733–736 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Peters, D.J.M. & Sandkuijl, L.A. Genetic heterogeneity of polycystic kidney disease in Europe. in Contributions to Nephrology, Polycystic Kidney Disease (eds Breuning, M. H., Devoto, M. & Romeo, G.) 128–139 (Karger, Basel, 1992).

    Chapter  Google Scholar 

  15. Ravine, D. et al. Phenotype and genotype heterogeneity in autosomal dominant polycystic kidney disease. Lancet 340, 1330–1333 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894 (1994).

    Article  Google Scholar 

  17. Peral, B. et al. Splicing mutations of the polycystic kidney disease 1 (PKD1) gene induced by intronic deletion. Hum. molec. Genet. 4, 569–574 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Brook-Carter, P.T. et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease-acontiguous gene syndrome. Nature Genet. 8, 328–332 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315 (1993).

  20. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Adds Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  21. von Heijne, G. A new method for predicting signal sequence cleavage sites. Nucl. Adds Res. 14, 4683–4691 (1986).

    Article  CAS  Google Scholar 

  22. Kobe, B. & Deisenhofer, J. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19, 415–421 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Rothberg, J.M., Jacobs, J.R., Goodman, C.S. & Artavanis-Tsakonas, S. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev. 4, 2169–2187 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Oldberg, Å., Antonsson, P., Lindblom, K. & Heinegard, D. A collagen-binding 59-kd protein (fibromodulin) is structurally related to the small interstitial proteoglycans PG-S1 and PG-S2 (decorin). EMBO J. 8, 2601–2604 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lamballe, F., Klein, R. & Barbacid, M. trkc, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66, 967–979 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Drickamer, K. Membrane receptors that mediate glycoprotein endocytosis: structure and biosynthesis. Kid. Int. 32, 167–180 (1987).

    Google Scholar 

  27. Drickamer, K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. biol. Chem. 263, 9557–9560 (1988).

    CAS  PubMed  Google Scholar 

  28. Weis, W.I., Drickamer, K. & Hendrickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127–134 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Oldberg, A., Antonsson, P. & Heinegard, D. The partial amino acid sequence of bovine cartilage proteoglycan, deduced from a cDNA clone, contains numerous Ser-Gly sequences arranged in homologous repeats. Biochem. J. 243, 255–259 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor, M.E., Conary, J.T., Lennartz, M.R., Stahl, P.O. & Drickamer, K. Primary structure of the mannose receptor contains multiple motif resembling carbohydrate-recognition domains. J. biol. Chem. 265, 12156–12162 (1990).

    CAS  PubMed  Google Scholar 

  31. Bevilacqua, M.P., Stengelin, S., Gimbrone, M.A. Jr. & Seed, B. Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243, 1160–1165 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Kwon, B.S. et al. A melanocyte-specific gene, Pmel 17, maps near the silver coat color locus on mouse chromosome 10 and is in a syntenic region on human chromosome 12. Proc. Natl. Acad. Sci. U.S.A. 88, 9228–9232 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsushita, O., Yoshihara, K., Katayama, S., Minami, J. & Okabe, A. Purification and characterisation of a Clostridium perfringens 120-Kilodalton collagenase and nucleotide sequence of the corresponding gene. J. Bacteriol. 176, 149–156 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. molec. Biol. 238, 528–539 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Williams, A.F. & Barclay, A.M. The immunoglobulin superfamily - domains for cell surface recognition. A. Rev. Immunol. 6, 381–405 (1988).

    Article  CAS  Google Scholar 

  36. Jones, E.Y., Harlos, K., Bottomley, M.J., Robinson, R.C., Driscoll, P.C. et al. Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 Å resolution. Nature 373, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Brümmendorf, T. & Rathjen, F.G. Cell adhesion molecules 1: immunoglobulin superfamily. Protein Prof. 1, 951–1058 (1994).

    Google Scholar 

  38. Komblihtt, A.R., Umezawa, K., Vibe-Pederson, K. & Baralle, F.E. Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J. 4, 1755–1759 (1985).

    Article  Google Scholar 

  39. Streuli, M., Krueger, N.X., Hall, L.R., Schlossman, S.F. & Saito, H. A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J. exp. Med. 168, 1523–1530 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Volkmer, H., Hassel, B., Wolff, J.M., Frank, R. & Rathjen, F.G. Structure of the axonal surface recognition molecule neurofascin and its relationship to a neural subgroup of the immunoglobulin superfamily. J. Cell Biol. 118, 149–161 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Bum, T.C. et al. Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) gene predicts the presence of a leucine-rich repeat. Hum. molec. Genet. 4, 575–582 (1995).

    Article  Google Scholar 

  42. van Adelsberg, J.S. & Frank, D. The PKD1 gene produces a developmentally regulated protein in mesenchyme and vasculature. Nature Med. 1, 359–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. International Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 81, 289–298 (1995).

  44. Roth, G.J. Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins. Blood 77, 5–19 (1991).

    CAS  PubMed  Google Scholar 

  45. McFarland, K. C. et al. Luptropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science 245, 494–499 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Chao, M.V. Neurotrophin receptors: a window into neuronal differentiation. Neuron 9, 583–593 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Jia, R. & Hanafusa, H. The proto-oncogene of v-eyk (v-ryk) is a novel receptor-type protein tyrosine kinase with extracellular Ig/FN-lll domains. J. biol. Chem. 269, 1839–1844 (1994).

    CAS  PubMed  Google Scholar 

  48. Jordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DMA. Science 245, 1066–1072 (1989).

    Article  Google Scholar 

  49. Gower, H.J. et al. Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell 55, 955–964 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Schäfer, K. et al. Characterisation of the Han-SPRD rat model for hereditary polycystic kidney disease. Kid. Int. 46, 134–152 (1994).

    Article  Google Scholar 

  51. Ekblom, P. Developmentally regulated conversion of mesechyme to epithelium. FASEB J. 3, 2141–2150 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Reeders, S.T. et al. Prenatal diagnosis of autosomal dominant polycystic kidney disease with a DNA probe. Lancet 1, 6–8 (1986).

    Article  Google Scholar 

  53. Himmelbauer, H. et al. Saturating the region of the polycystic kidney disease gene with Not I linking clones. Am. J. hum. Genet. 48, 325–334 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Henikoff, S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 28, 351–359 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sipos, L. & von Heijne, G. Predicting the toplogy of eukaryotic membrane proteins. Eur. J. Biochem. 213, 1333–1340 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Engelman, D.M., Steitz, T.B. & Goldman, B. Identifying nonpolar transbilayer helices into amino acid sequences of membrane proteins. A. Rev. Biophys. Chem. 15, 321–353 (1986).

    Article  CAS  Google Scholar 

  59. Hartmann, E., Rapoport, T.A. & Lodish, H.F. Predicting the orientation of eukaryotic membrane proteins. Proc. Natl. Acad. Sd. U.S.A. 86, 5786–5790 (1989).

    Article  CAS  Google Scholar 

  60. Nakashima, H. & Nishikawa, K. The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. FEBS Lett. 303, 141–146 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Takagi, T. & Cox, J.A. Primary structure of the target of calcium vector protein of amphioxus. J. biol. Chem. 265, 19721–19727 (1990).

    CAS  PubMed  Google Scholar 

  62. Bork, P. & Doolittle, R.F. Fibronectin type III modules in the receptor phosphatase CD45 and tapeworm antigens. Protein Sci. 2, 1185–1187 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuma, K.-i., Iwabe, N. & Miyata, T. Motifs of cadherin- and fibronectin type Ill-related sequences and evolution of the receptor-type-protein tyrosine kinases: Sequence similarity between proto-oncogene ret and cadherin family. Molec. biol. Evol. 10, 539–551 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, J., Ward, C., Peral, B. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10, 151–160 (1995). https://doi.org/10.1038/ng0695-151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing