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Abstract

Single nucleotide polymorphisms (SNPs) discovered by genome-wide association studies
(GWASS) account for only a small fraction of the genetic variation of complex traits in human
populations. Where is the remaining heritability? We estimated the proportion of variance for
human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear
model analysis, and validated the estimation method by simulations based upon the observed
genotype data. We show that 45% of variance can be explained by considering all SNPs
simultaneously. Thus, most of the heritability is not missing but has not previously been detected
because the individual effects are too small to pass stringent significance tests. We provide
evidence that the remaining heritability is due to incomplete linkage disequilibrium (LD) between
causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele
frequency (MAF) than the SNPs explored to date.

Genome-wide association studies in human populations have discovered hundreds of SNPs
significantly associated with complex traitsl-2, yet for any one trait they typically account
for only a small fraction of the genetic variation. Where is the missing heritability, the so
called dark matter of the genome34? Suggested explanations include the existence of gene-
by-gene or gene-by-environment interactions®, the common disease-rare variant hypothesis®
and the possibility that inherited epigenetic factors cause resemblance between relatives’:8.
However, the variance explained by the validated SNPs is usually much less than the
narrow-sense heritability, the proportion of phenotypic variance due to additive genetic
variance. Non-additive genetic effects do not contribute to the narrow-sense heritability, so
explanations based on non-additive effects are not relevant to the problem of missing
heritability (Supplementary Note). There are two explanations for the failure of validated
SNP associations to explain the estimated heritability: either the causal variants each explain
such a small amount of variation that their effects fail to reach stringent significance
thresholds and/or the causal variants are not in complete linkage disequilibrium (LD) with
the SNPs that have been genotyped. Lack of complete LD might, for instance, occur if
causal variants have lower minor allele frequency (MAF) than genotyped SNPs. Here we
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test these two hypotheses and estimate the contribution of each to the heritability of height in
humans as a model complex trait.

Height in humans is a classical quantitative trait, easy to measure and studied for well over a
century as a model for investigating the genetic basis of complex traits®-10. The heritability
of height has been estimated to be ~0.8 (refs. 9,11-13). Rare mutations that cause extreme
short or tall stature have been found!415, but these do not explain much of the variation in
the general population. Recent GWASs on tens of thousands of individuals have detected
~50 variants that are associated with height in the population, but these in total account for
only ~5% of phenotypic variancel6-19,

Data from a GWAS that are collected to detect statistical associations between SNPs and
complex traits are usually analysed by testing each SNP individually for an association with
the trait. To account for the large number of significance tests carried out, a very stringent P
value is used. This reduces the occurrence of false positives, but may cause many real
associations to be missed, especially if individual SNPs have a small effect on the trait. An
alternative approach designed to overcome this problem is to fit all the SNPs
simultaneously2C. The effects of the SNPs are treated statistically as random, and the
variance explained by all the SNPs together is estimated. This approach, which we use here,
does not attempt to test the significance of individual SNPs but provides an unbiased
estimate of the variance explained by the SNPs in total.

Estimating genetic variance explained by genome-wide SNPs

From a number of GWASs, we selected 4,259 individuals who were not knowingly related
to one another and confirmed this with SNP data. We then estimated their pairwise genetic
relationships using all autosomal markers (MAF > 0.01), and retained 3,925 individuals
(3,248 adults and 677 16-year-olds) whose pairwise relationship was estimated at less than
0.025 (maximum relatedness approximately corresponding to cousins two to three times
removed: Supplementary Fig. 1). We fitted a linear model to the height data and used
restricted maximum likelihood (REML)?Z! to estimate the variance explained by the SNPs.
(In Online Methods, we show how this can be conveniently implemented with a
mathematically equivalent model that uses the SNPs to calculate the genomic relationship
between pairs of subjects). Using this approach, we estimated the proportion of phenotypic
variance explained by the SNPs as 0.45 (s.e. = 0.08, Table 1), a nearly tenfold increase
relative to the 5% explained by published and validated individual SNPs.

Correcting for incomplete LD between SNPs and causal variants

Our estimate of 45% is still less than the 80% of phenotypic variance due to additive genetic
effects (that is, the estimated heritability). One reason why the SNPs do not explain the full
estimated heritability is that the SNPs on the arrays are not in complete LD with causal
variants. The ability of the SNPs to explain the phenotypic variation caused by causal
variants depends on the LD between all the causal variants and all the SNPs. Lack of
complete LD is manifested as a difference between the genomic relationship between each
pair of subjects j and k at the causal variants (Gjx) and the relationship between the same
individuals calculated from the SNPs (Ajk). As causal variants are unknown, we cannot
estimate their LD with observed SNPs directly. However, we can mimic it by considering
the LD of the genotyped SNPs with one another. It is likely that the causal variants and the
SNPs have different properties, so LD among SNPs is only a guide to LD between causal
variants and SNPs. One way in which the causal variants may differ from the SNPs is in
MAF. To investigate how the difference between Gjx and Aj depends on the number of
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SNPs used and the MAF of the causal variants, we randomly sampled five sets of SNPs
(50K, 100K, ..., 250K, where K = 1,000) in the adult dataset and ten sets of SNPs in the
adolescent dataset (50K, 100K, .., 500K). For each SNP set, we randomly split the SNPs
into two groups, the first representing SNPs and the second representing causal variants, and
estimated genetic relationships using all of the SNPs in the first group (Ajx) and using SNPs
with MAF < ¢ in the second group (proxy for Gji), where ¢ = 0.1, 0.2, 0.3, 0.4 or 0.5. We
calibrated the prediction error by calculating the regression of Gjx on Aj. We established
(c+1/N)
empirically that the regression coefficient p=1- var(A ji) (Fig. 1), where N is the number of
SNPs used to calculate Ajy and the term in ¢ depends on the MAF of the causal variants
(Online Methods). If the causal loci that have the same spectrum of allele frequency as the
genotyped SNPs (6 = 0.5), then ¢ = 0, and 1/N can be interpreted as the sampling error for
estimating the relationship over the whole genome from N random SNPs. The parameter ¢ is
> 0 if 6 < 0.5 because the relationship at causal variants with low MAF is typically less than
the average relationship over the whole genome.

Therefore, given the number of SNPs used, we can correct the estimate of the variance
explained by the SNPs for incomplete LD with causal variants, if causal variants have the
same allelic frequency spectrum as genotyped SNPs. Using the same linear model as above,
but corrected for this incomplete LD (c = 0), we estimated the proportion of variance
explained by causal variants to be 0.54 (s.e. = 0.10, Table 1). This estimate assumes that the
LD between SNPs and causal variants is as strong as that between the genotyped SNPs.
However, if the causal polymorphisms tend to have lower MAF than the SNPs that have
been assayed, as expected from neutral and selection theories of quantitative genetic
variation®22, we expect the LD between SNPs and causal variants to be reduced. When we
used SNPs with a MAF < 0.1 as proxies for causal variants we found ¢ = 6.2 x 1076, Using
this value of c to correct for incomplete LD, we estimated the proportion of variance in
height explained by causal variants to be 0.84 (s.e. = 0.16; Supplementary Table 1).
Although the standard error is high, this result is consistent with causal variants being, on
average, at lower frequency than the SNPs used on commercial arrays and therefore in less
LD with these SNPs than the LD of the SNPs with other SNPs. This does not prove that the
causal variants have MAF < 0.1, but it shows that if this were the case, they could explain
the estimated heritability of height (~0.8).

Variance explained does not depend on number of SNPs

If our procedure for correcting for incomplete LD between SNPs and causal variants is
correct, the variance explained by the causal variants should not depend on the number of
SNPs used. To show that this is so, we randomly sampled 10%, 20%, ..., and 100% of all
the ~295K SNPs and estimated the variance explained by causal variants for each group of
SNPs using both raw and adjusted estimates of relationships (assuming ¢ = 0; Fig. 2). For
the raw estimates of relationships, the proportion of variance explained increases with the
number of SNPs because prediction error is reduced through inclusion of more SNPs. When
the relationship estimates are adjusted for prediction error, the proportions of variance
explained are independent from the number of SNPs and agree with an estimate of ~0.54 but
have larger s.e. when fewer SNPs are used.

In addition, 1,318 of the 3,925 individuals were genotyped with ~516K SNPs, so we
estimated relationships among these individuals (641 adults and 677 16-year-olds) with
516,345 SNPs and estimated the remaining pairwise relationships with 294,831 SNPs. We
adjusted the two parts of the relationship matrix according to the number of SNPs used
(assuming ¢ = 0). The resulting estimate of proportion of variance explained by causal
variants is no different from that using all the individuals with ~295K SNPs (Table 1).
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Simulation studies

We used simulation studies to validate the method of estimating the variance explained by
causal variants using genome-wide SNPs. We simulated a quantitative trait on the basis of
the observed genotype data of 3,925 individuals and 294,831 SNPs in two ways: (i)
randomly sampling causal variants from all the SNPs, and (ii) randomly sampling causal
variants from the SNPs with MAF < 0.1 (Supplementary Note). Table 2 shows that in case
(i), if we included the causal variants in estimating the genetic relationships, we obtained an
unbiased estimate of the proportion of phenotypic variance explained by the causal variants
(in this case this is the heritability of the trait, because in a simulation we know that these
causal variants explain all the genetic variance). When we excluded the causal variants, we
underestimated heritability, as the relationship derived from SNPs overestimated the
variation of the relationship at causal loci owing to imperfect LD. However, the heritability
estimate recovered when we adjusted relationship estimates using equation [9] (Online
Methods; ¢ = 0). In case (ii), even if we included the causal variants in the analysis, we still
underestimated heritability, because the causal variants have lower frequency than the SNPs,
on average, and have less LD with the SNPs than the SNPs have with other SNPs. Similarly,
when we adjusted the relationship estimates with equation [9] (c = 6.2 x 1075), we obtained
unbiased estimates of h2. These results are consistent with the inference we draw from the
empirical data. The results show that the estimate of variance caused by causal variants is
unbiased regardless of the number of SNPs used, provided the method proposed here is
employed.

DISCUSSION

Highly significant and well-replicated SNPs identified to date explain only ~5% of the
phenotypic variance for height'®. Our results show that common SNPs in total explain
another ~40% of phenotypic variance. Hence, 88% (40/45) of the variation due to SNPs has
been undetected in published GWASs because the effects of the SNPs are too small to be
statistically significant. Our results also suggest that the discrepancy between 80%
heritability and 45% accounted for by all SNPs is due to incomplete LD between causal
variants and the SNPs, possibly because the causal variants have a lower MAF on average
than the SNPs typed on the array. We cannot tell from these results whether or not some of
this discrepancy is due to causal variants with very low frequency — for example, MAF <
0.001 (ref. 4). However, the results show that the total genetic variance could be explained
by causal variants similar to the SNPs, with MAF < 0.1. If causal variants affecting height
had no effect on fitness, they would show a complete range of MAF but with a higher
proportion at low MAF than the SNPs on commercial arrays. If variants affecting height are
subject to selection for either allele, there will still be a spectrum of MAF, but with an even
greater proportion at low MAF. Thus, we do not conclude that all causal variants have MAF
<0.1, but that the spectrum of MAF at causal variants is more concentrated at low values
than it is for the SNPs used as markers.

The power to detect individual SNPs as significantly associated with a trait such as height
depends on the variance associated with the SNP. This, in turn, depends on the LD between
the SNP and the causal variant, the effect of the causal variant and its frequency. Causal
variants with small effects or rare alleles with large effects (including rare Mendelian
variants) will explain little variance and so will tend not to be significant even if they are in
high LD with an assayed SNP. However, the cumulative effect of these SNPs will be
included as part of the 45% of phenotypic variance explained by the SNPs in our analysis.
Despite the use of ~295K SNPs, many causal variants, especially if they have low MAF,
will not be in perfect LD with the assayed SNPs. This reduces the power of a conventional
GWAS to detect them and reduces the variance estimated for the SNPs collectively in our
study. The results imply that most causal variants explain such a small proportion of the
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variance that many causal variants affecting height must exist. The results of published
GWASs are consistent with this finding, as high test statistics are distributed over much of
the genome1,

Could our results be biased because of ascertainment in the data, data analysis or
interpretation? We carefully adjusted phenotypes for systematic differences and applied
thorough quality control to the SNP data (Online Methods). We show by principal
component analysis (PCA) of African, Asian and European populations that all of our
samples are of European ancestry (Supplementary Fig. 2a,b). We demonstrate further by
PCA of European populations only that our samples show close relationship to the UK
population and do not show an apparent cline across Europe (Supplementary Fig. 2¢,d). We
performed REML analysis by fitting the first two, four and ten eigenvectors from the
European-only PCA as covariates. The results show little to no systematic difference in the
estimates of the variance explained by fitting up to ten eigenvectors (Supplementary Table
1). Furthermore, we performed single-SNP association analysis between 1,286 ancestry-
informative markers (AIMs) and height, and did not detect a significant inflation of the test
statistic for these AlMs (Supplementary Fig. 3; P = 0.219). All these results suggest that our
estimate of variance explained by all SNPs is unlikely to be biased by population
stratification. A subtle form of stratification in GWASs might occur because subjects are
distantly related. We excluded any subjects with a relationship to another subject > 0.025. If
distant pedigree relationships were an important cause of the estimated relationships, then all
chromosomes of a pair of subjects should reflect this relationship. We found no correlation
between relatedness estimated from different chromosomes (Supplementary Table 2). Thus,
the relationships we estimate from SNPs are driven by LD among the SNPs. It is the same
LD that causes a SNP that is not a causal variant to show an association with a trait such as
height. In other words, our estimate of the variance explained by the SNPs is based on the
same phenomenon as the SNP associations reported from GWASs (LD between SNPs and
causal variants). However, we accumulate the variance explained by all SNPs and so are not
limited by the need for individual SNPs to pass stringent significance tests.

We also verified that the estimates of variance explained by the SNPs are not driven by a
few outlier individuals that are similar in height and in SNP genotypes (Fig. 3). We
regressed the squared difference in height between each pair of individuals on the estimate
of their relatedness. The intercept and slope are estimates of twice the phenotypic variance
and minus twice the additive genetic variance explained by the SNPs, respectively?3, so the
estimate of variance explained by the SNPs from this regression analysis is ~0.51. The
signal on the slope of the regression line comes from many points and is not due to a few
outliers. Note that our maximum likelihood estimate is more accurate than this regression
analysis; we show the latter only to illustrate the robustness of the estimate. In addition, we
performed REML analysis using subsets of individuals by randomly splitting the whole
sample into two and four groups and by sampling 1,000, 2,000 and 3,000 individuals with
replacement for four replicates (Supplementary Fig. 4). The average estimates of variance
explained by all SNPs are not affected by sample size, but, as expected, the sampling error
increases as sample size decreases.

Heritability is the proportion of phenotypic variation due to additive genetic factors2*; we
therefore fitted a model in which SNPs have additive effects. Non-additive genetic variation
and variation due to gene-environment interactions may exist, but they are not part of the
missing heritability because they do not contribute to the heritability. Epigenetic mutations
may cause resemblance between relatives and contribute to heritability if stably inherited,
but in that case they would be equivalent to DNA sequence variants, would show LD with
the assayed SNPs and would not contribute to missing heritability2®.
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The method we have presented could be misinterpreted as a method for estimating the
heritability of height. Actually, we estimate the variance in height explained by the SNPs.
We show that these SNPs do explain over half the estimated heritability of height and that
the missing proportion can be explained by incomplete LD between the SNPs and causal
variants.

If other complex traits in humans, including common diseases, have genetic architecture
similar to that of height, then our results imply that larger GWASs will be needed to find
individual SNPs that are significantly associated with these traits, because the variance
typically explained by each SNP is so small. Even then, some of the genetic variance of the
trait will be undetected because the genotyped SNPs are not in perfect LD with the causal
variants. Deep resequencing studies are likely to uncover more polymorphisms, including
causal variants that will be represented on future genotyping arrays. Our data provide strong
evidence that the variation contributed by many of these causal variants is likely to be small
and that very large sample sizes will be required to show that their individual effects are
statistically significant. A similar conclusion was drawn recently for schizophrenia2. In
some cases the small variance will be due to a large effect for a rare allele, but this will still
require a large sample size to reach significance. Genome-wide approaches like those used
in our study can advance our understanding of the nature of complex-trait variation and can
be exploited for selection programs in agriculture?? and individual risk prediction in
humans?8.

ONLINE METHODS

Statistical framework

In a GWAS of a quantitative trait, we test for associations between individual SNPs and the
trait by the following simple regression model,

Yj=HtXijaite; [1]

where yj is the phenotypic value of the j-th individual; « is the mean term; a; is the allele
substitution effect of SNP i; xj is an indicator variable that takes value of 0, 1 or 2 if the
genotype of the j-th individual at SNP i is bb, Bb or BB (alleles are arbitrarily called B or b),

respectively; and e; is the residual effect, ¢; ~ N(O, o)., with 62 being the residual variance.

Supposing that we could genotype subjects at the causal variants, we can include them all in
the model

m

yj:/l+gj+ej and gj=Zz,-ju,-
i=1 [2]

where gj is the total genetic effect of an individual j; m is the number of causal loci; u; is the
scaled additive effect of the i-th causal variant; zj; takes value of

=2fi/ N2f:(1 = £), (1 =2f)/ N2f:i(1 = f) or 2(1 — f;)/ +J2f:(1 — f;) if the genotype of the j-th
individual at locus i is qq, Qq or QQ, respectively, with f; the frequency of Q allele at locus i
(alleles are arbitrarily called Q or ¢)?°2%; E(zj;)= 0 and var(z;})= 1. In matrix notation, y=x1+

g+ e and g= Zu. We treat u as random effects and assume u ~ N(0, Io2), with o2 being the

variance of causal effects; then g; ~ N(0, (r:é:m(r,%), where c7§ is variance of total additive
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genetic effects, and the variance-covariance matrix of y (the vector of observations) can be
expressed as

=
Og

var(y):ZZ'o'i+Io'3=
m

+Io2=Go2+1o2
$ [3]

where G is the genetic relationship matrix between pairs of individuals at causal loci. This

equation shows the equivalence between the classical definition of heritability ( h2=0'§,/0'2)
with op? being the phenotypic variance, and the proportion of phenotypic variance explained
by the causal variants altogether.

In practice, we know little about the number and positions of the causal variants, so we are
unable to obtain the G matrix directly. However, we can calculate the relationship from a
genome-wide sample of SNPs (A) using the same formula as for G. That is.

A=WW'/N 4]

where N is the number of SNPs and w;j=(x;; — 2p;)/ v2pi(1 — p;) with p; the allele

frequency at SNP i. This formula for A ignores the sampling error associated with each

SNP. We can improve the estimate of A by calculating a weighted average across SNPs. For
var(x;; — 2p;)var(xy — 2p;)

a SNP i, when j # k (individuals j and k), var(A)= 4p2(1 = pi)? =L in other

words, it is the same for all SNPs regardless of allele frequenf:y. When j =k,

var[ (xij — 2pi)°] 1 -2pi(1 - p))
4p(1 - p;)? ~ 2pi(1—p;) ;inother words, it is dependent on the allele
frequency of the SNP. We therefore use the following equation to calculate Aj;,

var(A;;)=

x2j — (1+2p)xij+2p?

Ayi=1+
v 2pi(1 = p;) 5]

which provides an unbiased estimate of inbreeding coefficient (F) with mean of 1 + F, and
has sampling variance of 1 when F = 0.

To obtain a genome-wide relationship, we combine Ajjk for all of the SNPs using a common-
sense weighting scheme,

1 o i=2p)a=2pi) ., 4
PUELE QWS I 2 i A
jk_ﬁZi ijk= ]+lz,A\’;j_“l+2p')‘w‘f+2p’; &

N&iT gy T [6]

Estimates of relationships are always relative to an arbitrary base population in which the
average relationship is zero. We use the individuals in the sample as the base so that the
average relationship between all pairs of individuals is zero and the average relationship of
an individual with him/herself is 1.
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Unbiased estimate of the relationship at the causal variants and the genetic variance

If we knew the genotypes at the causal variants, we could fit model [3] and estimate the
genetic variance aﬁ. Instead we will use a modified version (A™) of the relationship matrix
based on the SNPs A. Although we will use REML to estimate crﬁ, the requirements of A" to
obtain an unbiased estimate of o; are more easily understood for the method illustrated in
Fig. 3. In this method Ay?ﬁ(v; — »)* for each pair of subjects is regressed on Gjx. The slope
of this regression is —2c-;. If we replace Gjk by an estimate A such that E(G jxlA%)=A, then
E(A.\ﬁk)=E(a+bG j=a+bA’, and the regression of A_v?k on A% is still b= — 207, so the

estimate of o, remains the same —b/2. To obtain an unbiased estimate of Gjk with the
required property, we use linear regression of Gj, on Ajx. We cannot calculate G, so instead
we use one set of SNPs to mimic causal variants using the following steps:

1. Randomly sample 2N SNPs from all the SNPs across the genome and randomly
split them into two groups (N SNPs in each group).

2. Calculate Ajk using all the SNPs in the first group.

3. Calculate Gjx using SNPs with MAF < ¢ in the second group (mimicking the
relationships at causal variants).

4. Regress Gj on Aj for j <k (use Gjk — 1 and Ajx — 1 when j = k). The regression
coefficient is
_cov(ij, Ajk)
var(Ajk) [71

5. Repeat the procedure using different numbers of SNPs.

If the relationship at causal loci is predicted without error by the observed SNPs, 4 should
equal one. When we applied this approach in our data, we found that for any of the MAF
threshold 0, var(Aj) is proportional to N whereas cov(Gjk, Ajk) is constant, irrespective of N
(Supplementary Fig. 5). Consequently, we established an empirical linear relationship
between f and the number of SNPs,

3 (c+1/N)
var(Aj,\.) (8]

B=1

where c is constant for a certain MAF threshold & —for example ¢ = 6.2 x 1076 when 4 =
0.1 and ¢ = 0 when ¢ = 0.5 (Fig. 1). The regression coefficient 5 is less than 1.0 because of
two effects. First, the term in 1/N is due to the sampling error in estimating A from only N
SNPs. This corresponds to the sampling error for Ajj, at a single SNP calculated above as 1.
If c = 0and N = infinite, # = 1. In this case Ajx is the genomic relationship averaged over all
positions in the genome. As the causal variants are a sample of such positions, Ajk is an
unbiased estimated of Gjk. Second, the term in ¢ occurs because the causal variants are not a
random sample of all SNPs but a sample with low MAF. This causes the causal variants to
have lower LD with the SNPs than random SNPs do with one another. Thus, even if Aj was
calculated from an infinite number of SNPs, it would still tend to overestimate the variance
in relationships at the causal variants and consequently underestimate the genetic variance.
We therefore adjust Aj as
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. { BAj,j#k
Jk—

T\ 4BAR - 1), j=k (9]

with the property of unbiasedness in the sense that E(G jxlA7)=A%.

Samples and genotyping

Height measurements, self-reported or clinically measured, from 35,189 Australian adults
and 2,036 Australian adolescents (around 16-years-old) were collected by the Queensland
Institute of Medical Research. Of these individuals, 8,884 adults and 1,668 adolescents have
been genotyped using Illumina SNP chips in several genome-wide association studies. All
the samples were collected with informed consent and appropriate ethical approval. The
adult samples were genotyped by HumanCNV370-Quad v3.0 BeadChips (~351K SNPs) or
Human610-Quad v1.0 BeadChips (~582K SNPs), and the adolescent samples were all
genotyped by Human610-Quad v1.0 BeadChips.

We included only the genotyped individuals of European descent, as verified by ancestry
analysis using genome-wide SNP data.3931 We selected a set of 3,535 “unrelated” adults
(1,421 males and 2,114 females; from 18 to 91 years old, with mean of 45) and 724
“unrelated” 16-year-old adolescents (354 males and 370 females), for a combined dataset of
4,259 “unrelated” individuals according to the pedigree information.

Quality control

We excluded SNPs in each individual dataset that had a mean GenCall Score < 0.7,
missingness > 5%, a minor allele frequency (MAF) < 0.01 or a Hardy-Weinberg equilibrium
(HWE) test P-value < 1078, using PLINK32. A total of 304,013 SNPs in the adult dataset
and 529,379 SNPs in the adolescent dataset passed this process, but only those in the
autosomes were included in the analysis (295,400 SNPs for the adult dataset, 516,345 SNPs
for the adolescent dataset and an intersect of 294,831 SNPs for the combined dataset).

We estimated the genetic relationships among all of the 4,259 individuals in the combined
dataset by equation [6]. The estimated relationships (off-diagonal elements of the
relationship matrix) ranged from —0.024 to 0.585, suggesting that some close relatives still
remained. The mean of genetic relationships of “unrelated” individuals should be close to
zero, so the lower-bound of the range can be roughly regarded as the maximum deviation of
an estimate from the mean. We estimated the two-tailed 95% confidence interval of
relationships (adjusted for multiple tests by Bonferroni correction) to be from about —0.027
to 0.027. Therefore, to avoid having any close relatives in the data, we chose a cut-off value
of 0.025 and selectively excluded one of any pair of individuals with an estimated
relationship > 0.025 to maximize the remaining sample size. We excluded 287 individuals
from the adult dataset and 47 individuals from the adolescent dataset. A total of 3,248
“unrelated” adults and 677 “unrelated” adolescents, with a combined dataset of 3,925
“unrelated” individuals, was retained for analysis.

The phenotypes were corrected for age and sex, and standardized to z-scores in each adult
and adolescent dataset separately. We used a two-tailed 90% Winsorisation33 to adjust the z-
scores of four individuals in the adult dataset with absolute values greater than 4.17, the (100
— 5/3248)! percentile of the standard normal distribution based on Bonferroni correction,
and combined the z-scores in both adult and adolescent datasets for the combined dataset of
height (Supplementary Fig. 1e).
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Figure 1.

Prediction error of genetic relationship. The genetic relationship at unobserved causal loci is
predicted, with error, from the relationship estimated from genotyped SNPs. The prediction
error is calibrated by comparing the relationship at causal loci (mimicked by a set of random
SNPs with MAF < 6) to that estimated from another set of random SNPs. Values plotted on
y-axis are (1-p) var(Ajk) (see Online Methods for the notations) calculated from different
numbers of random SNPs (N) in both adult and adolescent datasets. The slope of each line is
equal to 1.0, with R2 = 1.0. The intercept (c) is constant for a certain MAF threshold 6, and ¢
=6.2 x 1078 (p-value = 2 x 10714), 3.4 x 1076 (p-value = 9 x 10712, 1.8 x 1076 (p-value =
4 x10710), 7.8 x 1077 (p-value = 2 x 1077) and 9.2 x 1079 (p-value = 0.87, not significant)
for6=0.1, 0.2,0.3, 0.4 and 0.5, respectively.
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Estimates of variance explained by genome-wide SNPs from adjusted estimates of genetic
relationships are unbiased. Results are shown as estimates of variance explained by different
proportions of SNPs randomly selected from all the SNPs in the combined set. For each
group of SNPs, the variance explained by genome-wide SNPs is estimated using both raw
estimates of genetic relationships and adjusted estimates of genetic relationships correcting
for prediction error (assuming c = 0). Error bars denote s.e. of the estimate of variance
explained by genome-wide SNPs. The log-likelihood ratio test (LRT) statistic is calculated
as twice the difference in log-likelihood between the full (h? # 0) and reduced (h? = 0)

models.
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Figure 3.
All pairwise comparisons contribute to the estimate of genetic variance. Shown are the

squared z-score differences between individuals (A_\iﬁk) plotted against the adjusted estimates

of genetic relationship ( Ajk). The blue line is the linear regression line of A.Vﬁk on Aj-k. The
intercept and regression coefficient are estimates of twice the phenotypic variance and
minus twice the genetic variances23, respectively. The intercept is 1.98 (s.e. = 0.001) and the
regression coefficient is —1.01 (s.e = 0.27), consistent with estimates of the phenotypic and
additive genetic variance of 0.990 and 0.505, respectively, and a proportion of variance
explained by all SNPs of 0.51.
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